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We consider time-harmonic wave propagation in R 2.
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g ∈ L2
0(R 2) . . . source term

k > 0 . . . wave number

Source problem: Find v ∈ H1
loc(R 2) such that

∆v + k2v = −k2g in R 2

lim
|x |→∞

√
|x |
(

∂v
∂|x | − ikv

)
= 0 Sommerfeld radiation condition (SRC)
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Interpretation in the time domain:

c > 0 . . . wave speed

ω =
ck
2π

. . . frequency

λ =
c
ω

=
2π

k
. . . wave length

Then
G(x, t) = Re

(
g(x)e−iωt

)
, x ∈ R 2 , t ∈ R

V (x, t) = Re
(

v(x)e−iωt
)
, x ∈ R 2 , t ∈ R

satisfy

∂2V
∂t

(x, t)− c2∆V (x, t) = −c2G(x, t) in R 2



Direct source problem

6 Roland Griesmaier - Inverse source problems IPwin2021: Virtual PhD Winter School at DTU,
January 25-29, 2021

Rescale everything to k = 1, i.e., λ = 2π is the characteristic length scale.

“measure distances in wave lenghts”

Let

u(x) := v(kx) ∈ H1
loc(R 2)

f (x) := g(kx) ∈ L2
0(R 2)

then

∆u + u = −f in R 2

lim
|x |→∞

√
|x |
(

∂u
∂|x | − iu

)
= 0 Sommerfeld radiation condition (SRC)
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Rescale everything to k = 1, i.e., λ = 2π is the characteristic length scale.

“measure distances in wave lenghts”

∆u + u = −f in R 2

lim
|x |→∞

√
|x |
(

∂u
∂|x | − iu

)
= 0 Sommerfeld radiation condition (SRC)

i.e., ∫
R 2

(∇u · ∇ψ− uψ) dx =
∫

R 2
f ψ dx for all ψ ∈ H1

0 (R 2)

Away from supp(f ) weak solutions are classical solutions, and SRC makes sense.

Definition (Radiating solution)
Solutions to the direct source problem that satisfy SRC are radiating solutions.
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Bessel’s equation: For n = 0,1,2, . . .

y ′′(r) +
1
r

y ′(r) +
(

1− n2

r2 y(r)
)

= 0 , r > 0 ,

has two linearly independent solutions Jn and Yn (Bessel functions).

Negative index:

J−n = (−1)nJn and Y−n = (−1)nYn

Second family of linearly independent solutions (Hankel functions):

H(1)
n = Jn + iYn and H(2)

n = Jn − iYn

Asymptotic expansion for large argument:

H(1)
n (r) =

√
2

πr
ei(r− nπ

2 −
π
4 ) + O

(
r−

3
2

)
as r → ∞
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Fundamental solution: Let

Φ(x, y) =
i
4

H(1)
0 (|x − y |) , x, y ∈ R 2 , x 6= y ,

then

∆x Φ(x, y) + Φ(x, y) = 0 , x, y ∈ R 2 , x 6= y

lim
|x |→∞

√
|x |
(

∂Φ(x, y)
∂|x | − iΦ(x, y)

)
= 0 , SRC

Note that, as |x − y | → 0,

Φ(x, y) =
1

2π
log

1
|x − y | + O(1) .
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Theorem (Volume potential)

Let f ∈ L2
0(R 2), and

(Vf )(x) :=
∫

R 2
Φ(x, y)f (y) dy , x ∈ R 2 .

Then,

(a) w := Vf ∈ H1
loc(R 2)

(b) w is a radiating solution to

−∆w −w = f in R 2

(c) w is real analytic in R 2 \ supp(f )

Proof: See, e.g.,

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems,
Springer, New York, 2011 �
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Proposition (Uniqueness)

Let f ∈ L2
0(R 2). Then u := Vf is the unique radiating solution to the direct source

problem
∆u + u = −f in R 2

Proof:
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�

Corollary

(a) Entire radiating solutions to ∆u + u = 0 in R 2 are zero.

(b) The unique radiating solution to ∆u + u = −f in R 2, f ∈ L2
0(R 2), is real

analytic in R 2 \ supp(f ).

(c) If ∆u + u = 0 on a connected set Ω ⊂ R 2, and u ≡ 0 on an open subset of Ω,
then u ≡ 0 on all of Ω.
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Theorem (Rellich’s lemma)

Let u ∈ H1
loc(R 2 \ BR(0) be a radiating solution to

∆u + u = 0 in R 2 \ BR(0)

satisfying

lim
r→∞

∫
|y |=r

|u(y)|2 ds(y) = 0 .

Then u ≡ 0 in R 2 \ BR(0).

Proof:
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Far field expansion:

As |x | → ∞ we have that

H(1)
0 (|x − y |) =

√
2

π|x − y |e
i(|x−y |− π

4 ) + O
(
|x − y |−

3
2

)
and using the notation x̂ = x

|x | ,

|x − y | = |x | − x̂ · y + O
(
|x |−1

)
,

ei|x−y | = ei|x |e−ix̂ ·y
(

1 + O
(
|x |−1

))
,

√
1

|x − y | =
1√
|x |

(
1 + O

(
|x |−

3
2

))
.
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Thus, the radiating solution u ∈ H1
loc(R 2) of

∆u + u = −f in R 2

with f ∈ L2
0(R 2) satisfies

u(x) =
∫

R 2
Φ(x, y)f (y) dy =

ei π
4

√
8π

ei|x |√
|x |

∫
R 2

e−ix̂ ·y f (y) dy + O
(
|x |−

3
2

)

Definition (Radiated far field)

The function u∞ ∈ L2(S1) given by

u∞(x̂) := f̂ (x̂) :=
∫

R 2
e−ix̂ ·y f (y) dy , x̂ ∈ S1 ,

is the far field radiated by f .

Remark
The far field u∞ is real analytic on S1.
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Corollary (of Rellich’s lemma)

If u∞ = 0, then u = 0 in R 2 \ supp(f ).

Proof:

�
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Suppose that f ∈ L2
0(R 2), and let u ∈ H1

loc(R 2) be the radiating solution of

∆u + u = −f in R 2

with far field u∞ = f̂ |S1 .

Task: Deduce useful information about f from observations of u∞.

Definition (Radiated wave/far field)
We call

(a) u|
R 2\supp(f ) the wave radiated by f

(b) u∞ the far field radiated by f

Definition (Non-radiating source)

A source f ∈ L2
0(R 2) is non-radiating, if the far field radiated by f vanishes or

equivalently if the radiated wave vanishes in R 2 \ supp(f ).
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Example (Non-radiating source)

Let u ∈ C∞
0 (R 2), and define

f := −∆u− u ∈ C∞
0 (R 2) .

Then f is non-radiating (because u is the radiating solution to ∆u + u = −f in R 2).

♦

Definition (Equivalent sources)

Two sources f1, f2 ∈ L2
0(R 2) are equivalent if they radiate the same far field.

Definition (D-free waves)

Let D ⊂ R 2. Then v ∈ H1(D) is D-free if ∆v + v = 0 in D.
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Theorem

Let D ⊂ R 2 open and bounded with sufficiently smooth boundary. A
source f ∈ L2(D) is non-radiating if and only if either of the conditions below holds:

(a) f = −∆w −w for some w ∈ H2
0 (D),

(b) f is L2-orthogonal to all D-free waves.

Here, H2
0 (D) =

{
u|D

∣∣∣ u ∈ H2(R 2) , u ≡ 0 in R 2 \D
}

Proof:
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Remark (Upper bounds on source support of f )

If f ∈ L2
0(R 2) radiates u∞, and supp(f ) ⊂ D ⊂⊂ BR(0), then we can

choose φε ∈ C∞(R 2) such that, for ε > 0,

φε(x) =

{
0 , x ∈ BR(0)
1 , x ∈ R 2 \ BR+ε(0)

Let u be the radiating solution to ∆u + u = −f in R 2, and define

fε := −∆(φεu)− (φεu) ∈ C∞
0 (R 2) .

Then fε radiates u∞ but
supp(fε) ∩ supp(f ) = ∅ .

In particular we cannot deduce upper bounds for supp(f ) from u∞.
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Definition (Far field carrier)

A compact set M ⊂ R 2 carries a far field u∞, if any open neighborhood of M
supports a source f ∈ L2

0(R 2) that radiates that far field.

Example



Inverse source problem

25 Roland Griesmaier - Inverse source problems IPwin2021: Virtual PhD Winter School at DTU,
January 25-29, 2021



Inverse source problem

26 Roland Griesmaier - Inverse source problems IPwin2021: Virtual PhD Winter School at DTU,
January 25-29, 2021

Lemma (Far field carrier)

Suppose M ⊂ R 2 is compact, and R 2 \M is connected. Then the following
conditions are equivalent:

(a) M carries a far field u∞.

(b) There exists a unique radiating solution to ∆u + u = 0 in R 2 \M, which has far
field u∞.

Proof:
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Lemma (Intersecting far field carriers)

Let M1,M2 ⊂ R 2 be compact and carry a far field u∞. Suppose that

R 2 \M1, R 2 \M2 and R 2 \ (M1 ∪M2) are connected.

Then M1 ∩M2 carries u∞.

Proof:
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Definition (Far field support class)

A far field support class is a collectionM of compact sets in R 2 that satisfies

(a) M is closed under intersection

(b) ∀M ∈ M: R 2 \M is connected

(c) ∀M1,M2 ∈ M: R 2 \ (M1 ∪M2) is connected

Definition (M-support)
LetM be a far field support class. TheM-support of a far field u∞ is

Mu∞ =
⋂

M∈M
M carries u∞

M .

Theorem
Mu∞ is the smallest set inM that carries u∞.
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Proof:
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Proposition and Definition (Convex source support)

(a) The class of compact convex subsets of R 2 is a far field support class.

(b) The correspondingM-support of a far field u∞ is called the convex source
support c supp(u∞) of u∞.

Corollary
The convex source support c supp(u∞) is the smallest convex set that carries u∞.

Example
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The source-to-far field map
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Restricted Fourier transform:

F : L2
0(R 2)→ L2(S1) , F f := f̂ |S1

We have seen that the null space of F is

N (F ) =
{

g = −∆v − v
∣∣∣ v ∈ H2

0 (R 2)
}

.

These are non-radiating sources.

Sources supported in BR(0):

FBR(0) : L2 (BR(0))→ L2(S1) , FBR(0)f := f̂ |S1

Since FBR(0) is an integral operator with smooth kernel, it is compact.
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Theorem (SVD of FBR(0))

The singular value decomposition of FBR(0) is given by

FBR(0)f =
∞

∑
n=−∞

σn(R)〈f , vn〉L2(BR(0))
un ,

where

σ2
n (R) = (2π)2

∫ R

0
J2

n (r)r dr

un(x̂) =
einϕx

√
2π

, x̂ = (cos ϕx , sin ϕx ) ∈ S1

vn(y) =

√
2πineinϕy Jn(|y |)

σn
, y = |y |(cos ϕy , sin ϕy ) ∈ BR(0)
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Proof:
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Remark

(a) The left singular values {un}n are the Fourier basis of L2(S1).

(b) Given α ∈ L2(S1), we can expand

α(θ) =
∞

∑
n=−∞

αn
einϑ

√
2π

, θ = (cos ϑ, sin ϑ) ∈ S1 ,

where

αn =
∫

S1
α(θ)

e−inϑ

√
2π

ds(θ) , n ∈ Z .

(c) We will often identify α ∈ L2(S1) with its Fourier coefficients {αn}n ∈ `2.
Parseval’s identity reads

‖α‖L2(S1) = ‖{αn}n‖`2 .
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The following theorem connects the size of the support of a source f with the
decay behavior of the Fourier coefficients {u∞

n }n of its radiated far field u∞.

Theorem
Let α ∈ L2(S1). Then

α ∈ R(FBR(0)) ⇐⇒
∞

∑
n=−∞

|αn|2

σ2
n (R)

< ∞ .

Proof:

�
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If α ∈ R(FBR(0)), then the source

f ∗α (x) :=
∞

∑
n=−∞

αn

σn(R)
vn(x) , x ∈ BR(0) ,

is well-defined, and f ∗α ∈ L2(BR(0)) is the source with smallest L2-norm

‖f ∗α ‖L2(BR(0))
=

(
∞

∑
n=−∞

|αn|2

σ2
n (R)

) 1
2

that is supported in BR(0) and radiates α.

Definition (Minimal power source)
Let α ∈ R(FBR(0)). We call f ∗α the minimal power source supported in BR(0) that
radiates α.
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If f ∈ L2(BR(z)), z ∈ R 2, then the far field radiated by f is

u∞(x̂) =
∫

BR(z)
f (y)e−ix̂ ·y dy

=
∫

BR(0)
f (y + z)e−ix̂ ·(y+z) dy

= e−iz·x̂ FBR(0)f (·+ z) ,

and f (·+ z) ∈ L2(BR(0)) .

Definition (Far field translation operator)

Let z ∈ R 2. Then Tz : L2(S1)→ L2(S1),

(Tzα)(θ) := e−iz·θα(θ) ,

is called the far field translation operator.
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Far field translation operator:

Tz : L2(S1)→ L2(S1) , (Tzα)(θ) = e−iz·θα(θ)

Using the Jacobi-Anger-expansion

e±iθ·y =
∞

∑
n=−∞

(±i)ne−inϕy Jn(|y |)einϑ

we can identify Tz with a convolution operator acting on the Fourier coefficients

Tz : `2 → `2 , Tz{αn}n =

{
∞

∑
n=−∞

αm−n(−i)nJn(|z|)e−inϕz

}
m

Let {αz
m}m denote the Fourier coefficients of Tzα.
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Corollary

Let α ∈ L2(S1) and z ∈ R 2. Then

α ∈ R(FBR(z)) ⇐⇒
∞

∑
n=−∞

|α−z
n |2

σ2
n (R)

< ∞ .

Proof:
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Algorithm to approximate c supp(α):

Given: u∞ ∈ L2(S1)

Choose origins z1, . . . , zL

For ` = 1, . . . ,L

Compute Fourier coefficients {α−z`
n }n ∈ `2 of T−z`α

Find smallest radius R` > 0 such that

∞

∑
n=−∞

|α−z`
n |2

σ2
n (R`)

< ∞

 α is carried by BR`
(z`)!

End For

c supp(u∞) ≈
L⋂

`=1

BR`
(z`)
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Properties of the singular values σn(R) of FBR(0):

σ2
n (R) = 2π

(
2π

∫ R

0
J2

n (r)r dr
)

Explicit formula:

s2
n(R) = R2π

(
J2

n (R)− Jn−1(R)Jn+1(R)
)

= π
(
(RJ ′n(R)− (R2 − n2)J2

n (R)
)

Lemma
∞

∑
n=−∞

s2
n(R) = πR2

Proof:

�
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Lemma (Monotonicity)

s2
n−1(R)− s2

n+1(R) ≥ 0 , n ≥ 0 ,

i.e., odd and even singular values are decreasing (n ≥ 0) or increasing (n ≤ 0).

Proof:

�
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Lemma (Exponential decay for |n| & R)

s2
n(R) ≤ C

(
R2

n2 e1− R2

n2

)n
R2

n2 if |n| ≥ R

Proof: Use sharp estimates for Jn(r) from

I. Krasikov, Approximations for the Bessel and Airy functions with an explicit
error term, LMS J. Comput. Math., 17:209–225, 2006

�
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Proposition (Asymptotic behaviour for |n| . R)

lim
R→∞

s2
dνRe(R)

2R
=


√

1− ν2 ν ≤ 1

0 ν ≥ 1

This means that the singular values σ2
n (R) of FBR(0) satisfy

σ2
n (R)

4π
∼


√

R2 − n2 n . R

0 n & R

R = 10

0

2

4

6

8

10

12

-15 -10 -5 0 5 10 15
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Proposition (Asymptotic behaviour for |n| . R)

lim
R→∞

s2
dνRe(R)

2R
=


√

1− ν2 ν ≤ 1

0 ν ≥ 1

This means that the singular values σ2
n (R) of FBR(0) satisfy

σ2
n (R)

4π
∼


√

R2 − n2 n . R

0 n & R

R = 100

0

20

40

60

80

100
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Theorem
Suppose that R > n ≥ 0, define α ∈ (0, π

2 ) by cos α = n
R , and assume α > ε > 0.

Then ∣∣∣∣∣Jn(R)−
√

2
πR sin α

cos
(

R(sin α− α cos α)− π

4

)∣∣∣∣∣ ≤ C(ε)

R
,

∣∣∣∣∣J ′n(R) +

√
2

πR sin α
sin α sin

(
R(sin α− α cos α)− π

4

)∣∣∣∣∣ ≤ C(ε)

R
.

Idea of proof:

�
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Proof (of the proposition):

�
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Regularization:

physical sources have limited power

P > 0 . . . power threshold of reasonable sources

receivers that are used to measure far fields have limited sensitivity

p > 0 . . . power threshold of reasonable receivers

If α ∈ L2(S1) is radiated from BR(0), then

f ∗α ∈ L2(BR(0)) is the mininal power source supported in BR(0).

Suppose that
‖f ∗α ‖L2(BR(0))

≤ P ,

and let

N = N(R,P,p) := sup
σ2

n (R)≥ p
P

n .
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Then

P ≥ ∑
|n|>N

|αn|2

σ2
n (R)

≥ 1
σ2

N+1(R)
∑
|n|>N

|αn|2 >
P
p ∑
|n|>N

|αn|2

and thus

∑
|n|>N

|αn|2 < p

is below the power threshold of any reasonable receiver!

Subspace of detectable far fields radiated by limited power sources in BR(0):

V 0
N :=

{
α ∈ L2(S1) | α(x̂) =

N

∑
n=−N

αneinϕx , x̂ ∈ S1

}
.

We call V 0
N the subspace of non-evanescent far fields radiated from BR(0).
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Remark
Due to the exponential decay of σn(R) for n ≥ R, we have that

N & R

is a good choice for a large range of P and p.
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Far field splitting and data completion
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Far field splitting:

Suppose that u∞ = u∞
1 + u∞

2 , where

u∞
1 is radiated from BR1

(z1)

u∞
2 is radiated from BR2

(z2)

with z1, z2 ∈ R 2 and R1,R2 > 0.

Goal: Given u∞, z1, z2, R1, R2 recover u∞
1 and u∞

2 .

Lemma
If BR1

(z1) ∩ BR2
(z2) = ∅, then

R
(
FBR1

(z1)

)
∩R

(
FBR2

(z2)

)
= {0} .

Proof:
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�
This means that

u∞
1 and u∞

2 are uniquely determined by u∞ if BR1
(z1) ∩ BR2

(z2) = ∅.

On the other hand,

both R(FBR1
(z1)

) and R(FBR2
(z2)

) are dense in L2(S1),

i.e., the inverse problem to recover u∞
1 and u∞

2 from u∞ is ill-posed.

We will
reconstruct the non-evanescent parts of u∞

1 and u∞
2 ,

and we show that this is stable.
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Definition (Projection onto V z
N)

For N ∈ N let P0
N : L2(S1)→ L2(S1) denote the orthogonal projection onto V 0

N .
Then,

Pz
N = TzP0

NT ∗z

is the orthonormal projection onto V z
N , z ∈ R 2.

Let N1 & R1 and N2 & R2.

We consider the least squares problem to find v∞
1 ∈ V z1

N1
and v∞

2 ∈ V z2
N2

such that

v∞
1 + Pz1

N1
v∞

2 = Pz1
N1

u∞

Pz2
N2

v∞
1 + v∞

2 = Pz2
N2

u∞
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This is equivalent to (
I − Pz1

N1
Pz2

N2

)
v∞

1 = Pz1
N1

(
I − Pz2

N2

)
u∞

(
I − Pz2

N2
Pz1

N1

)
v∞

2 = Pz2
N2

(
I − Pz1

N1

)
u∞

and these equations are uniquely solvable if z1 6= z1.

Below we will see that the condition number of these linear systems is

cond2

(
I − Pz1

N1
Pz2

N2

)
=

1

sin
(

ΘV
z1
N1

,V
z2
N2

) = cond2

(
I − Pz2

N2
Pz1

N1

)

where ΘV
z1
N1

,V
z2
N2

is the angle between V z1
N1

and V z2
N2

.
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Data completion:

Suppose that u∞ is radiated from BR(z) but cannot be observed on Γ ⊂ S1. Write

u∞|S1\Γ = u∞ − u∞|Γ .

Goal: Given u∞|S1\Γ, z, R, Γ recover u∞|Γ.

Since u∞ ∈ L2(S1) is real-analytic, the problem has a unique solution, if S1 \ Γ has
an interior point. However, without further assumptions unique continuation is
known to be an ill-posed inverse problem.
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Definition (Projection onto L2(Γ))

For Γ ⊂ S1 let PΓ : L2(S1)→ L2(S1)

PΓα := α|Γ

denote the orthogonal projection onto L2(Γ).

Let N & R and Γ ⊂ S1.

We consider the least squares problem to find v∞ ∈ V z
N such that

v∞ + Pz
N (v∞|Γ) = Pz

N

(
u∞|S1\Γ

)
PΓv∞ + v∞|Γ = PΓ

(
u∞|S1\Γ

)
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This is equivalent to

(I − PΓPz
N) (v

∞|Γ) = Pz
N

(
u∞|S1\Γ

)
and this equation is uniquely solvable.

Below we will see that the condition number of this linear systems is

cond2 (I − PΓPz
N) =

1

sin
(

ΘL2(Γ),V z
N

)
where ΘL2(Γ),V z

N
is the angle between L2(Γ) and V z

N .
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The far field translation operator

Tz : L2(S1)→ L2(S1) , (Tzα)(θ) := e−iz·θα(θ)

acts on the Fourier coefficients {αn} of α as a convolution operator

Tz : `2 → `2 , (Tz{αn})m = ∑n αm−n
(
(−i)nJn(|z|)e−inϕz

)
We have estimates

‖Tzα‖L∞(S1) = ‖α‖L∞(S1)

and

‖{(Tzα)m}m‖`∞ ≤ sup
m∈Z

∞

∑
n=−∞

|αm−n||Jn(|z|)| ≤ sup
n∈Z

|Jn(|z|)| ‖{αm}m‖`1

≤ 1
|z|1/3 ‖{αm}m‖`1 .
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‖Tc‖L∞,L∞ = 1 and ‖Tc‖`1,`∞ ≤ 1
|c|1/3

Theorem (Uncertainty principle for far field translation)

Suppose that α1 ∈ V z1
N1

and α2 ∈ V z2
N2

. Then

|〈α1, α2〉L2(S1)|
‖α1‖L2(S1)‖α2‖L2(S1)

≤
√
(2N1 + 1)(2N2 + 1)

|z1 − z2|
1
3

.

Proof:
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cos
(

ΘV
z1
R1

,V
z2
R2

)
:= sup

α1∈V
z1
R1

,α2∈V
z2
R2

|〈α1, α2〉L2(S1)|
‖α1‖L2(S1)‖α2‖L2(S1)

≤
√
(2R1 + 1)(2R2 + 1)
|z1 − z2|1/3

R1

z1

R2

z2

|z1 − z2|

The condition number of the splitting operator is csc(ΘV
z1
R1

,V
z2
R2

) ( ! )
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Remark
Assuming that N1,N2 ≥ 1 and

|z1 − z2| > 2(N1 + N2 + 1)

it can be shown that

∥∥{(Tz1−z2 α̃1)m

}
m

∥∥
`∞ [−N2,N2]

≤ 1

|z1 − z2|
1
2

∥∥{(α̃1)n}n

∥∥
`1[−N1,N1]

and thus

|〈α1, α2〉L2(S1)|
‖α1‖L2(S1)‖α2‖L2(S1)

≤

√
(2N1 + 1)(2N2 + 1)

|z1 − z2|
.

This estimate is optimal.
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‖Tc‖L∞,L∞ = 1 and ‖Tc‖`1,`∞ ≤ 1
|c|1/3

Theorem
Suppose that α ∈ V z

N and β ∈ L2(Γ). Then

|〈α, β〉L2(S1)|
‖α‖L2(S1)‖β‖L2(S1)

≤
√

(2N + 1)|Γ|
2π

Proof:
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cos
(

ΘV z
R ,L

2(Γ)

)
:= sup

α∈V z
R ,β∈L2(Γ)

|〈α, β〉L2(S1)|
‖α‖L2(S1)‖β‖L2(S1)

≤
√

(2R + 1)|Γ|
2π

R

z

Γ

S1 \ Γ

The condition number of the data completion operator is csc(ΘV z
R ,L

2(Γ)) ( ! )
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Lemma (Stability)
Let V1,V2 ⊂ V be subspaces of a Hilbert space V. Suppose that α ∈ V1, β ∈ V2
with cos ΘV1,V2

≤ C < 1, and let

γ = α + β

Then
‖α‖V ≤ (1−C2)−

1
2 ‖γ‖V

Proof:
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Theorem (Stability of far field splitting)

Suppose that γ,γδ ∈ L2(S1), z1, z2 ∈ R 2 and N1,N2 > 0 such that

(2N1 + 1)(2N2 + 1)

|z1 − z2|
2
3

< 1

and let

γ
LS
= α1 + α2 , α1 ∈ V z1

N1
and α2 ∈ V z2

N2

γδ LS
= αδ

1 + αδ
2 , αδ

1 ∈ V z1
N1

and αδ
2 ∈ V z2

N2

Then, for j = 1,2 ,

‖αδ
j − αj‖2

L2(S1) ≤
(

1− (2N1 + 1)(2N2 + 1)

|z1 − z2|
2
3

)−1

‖γδ − γ‖2
L2(S1)
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Proof:
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Theorem (Stability of data completion)

Suppose that γ,γδ ∈ L2(S1), z ∈ R 2, N > 0 and Γ ⊂ S1 such that

(2N + 1)|Γ|
2π

< 1

and let

γ
LS
= α + β , α ∈ V z

N and β ∈ L2(Γ)

γδ LS
= αδ + βδ , αδ ∈ V z

N and βδ ∈ L2(Γ)

Then

‖αδ − α‖2
L2(S1) ≤

(
1− (2N + 1)|Γ|

2π

)−1

‖γδ − γ‖2
L2(S1)

Proof: Same as previous proof. Use uncertainty principle for data completion.
�
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The End


