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PartialDifferentialEquations
The math of the physical world:
• Mechanics: Newton’s laws of motion
• Quantum mechanics: Schrödinger’s equations
• Electro-magnetism: Maxwell’s system
• Fluid dynamics: Navier-Stokes
• Biology: Cell membranes, Pandemic modeling!

Comes in 1,2,3, . . . dimensions.

Linear and non-linear models.

Elliptic, parabolic, hyperbolic.

In general for differential operator L

L(u) = 0
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Agenda

1 The Poisson equation and the Helmholtz equation
2 Integration by parts, Green’s formulae and weak derivatives
3 Sobolev spaces and elliptic PDE’s

References:
Walter Strauss, Introduction to Partial Differential Equations, second ed., Wiley 2008
Lawrence C. Evans, Partial Differential Equations, second ed., AMS 2010.
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1 The Poisson equation and the Helmholtz equation
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ThePoissonequation
In the unit circle Ω = B(0,1) ⊂ R2 consider

−∆u = f in Ω,

u = 0 on ∂Ω.
(1)

Notation

∆u = ∇ · ∇u
∆u = uxx + uyy (Cartesian coordinates (x , y))

∆u = urr +
1
r

ur +
1
r2 uθθ (Polar coordinates(r , θ))

Models electric potential u and current −∇u due to interior source f in a disk
shaped conducting medium Ω.
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Theeigenvalueproblem
Dirichlet Laplace

−∆v = λv in Ω,

v = 0 on ∂Ω.

Separation of polar variables v(r , θ) = R(r)Θ(θ) leads to Bessel’s equation

r2 ∂
2R
∂r2 + r

∂R
∂r

+ (r2 − n2)R = 0, 0 < r < 1;

with R(0) bounded and R(1) = 0,
(2)

and

Θ′′ + n2Θ = 0 in R (+ periodic BC).

Bessel’s equation of order n solved by Bessel functions of the first kind Jn(βmnr);
βmn is the m’th zero of Jn.
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Bessel functions

First kind Second kind
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The Dirichlet eigenfunctions and eigenvalues

vmn(r , θ) = cmnJn(βmnr)einθ; λmn = β2
mn.

Facts
• {vmn}∞m=1,n=0 constitute an orthonormal basis for L2(Ω).

• Weyl’s law (1911): The number of eigenvalues N(λ) below the number λ is
asymptotically

N(λ)

λ
∼ 4

and consequently λmn →∞.
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Solution toPoisson’sproblem

We find for −∆u = f ∈ L2(Ω) with

f =
∑
m,n

fmnvmn

the unique solution u to the Poisson problem

u =
∑
m,n

fmn

λmn
vmn

with stability estimate

‖u‖L2(Ω) ≤ ‖f‖L2(Ω).

January 25, 2021 IPwin2021 - Kim Knudsen - DTU Compute 10A primer on PDE’s



Integralkernel -Green’s function
Define for the Poisson problem the solution operator

K : L2(Ω)→ L2(Ω)

f 7→ u

This is an integral operator

u(y) = Kf (y) =

∫
Ω

G(x , y)f (x)dx ,

with G denoting the Dirichlet Green’s function

−∆G(·, y) = δy in Ω, G(·, y) = 0 on ∂Ω

formally represented by

G(x , y) =
∑
m,n

1
λmn

vmn(y)vmn(x).
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TheHelmholtzequation

For wave number k and r = |x |

∆u + k2u = −f in R2

lim
r→∞

√
r (∂r u − iku) = 0 (Sommerfeld radiation condition)

(3)

Hankel functions

H(1)
n = Jn + iYn; H(2)

n = Jn − iYn

with Yn are the Bessel function of second kind.
Unique solution to (3) given by volume potential

u(x) = −
∫
R2

H(1)
0 (|x − y |)f (y)dy .
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Well-posedvs ill-posed

According to Hadamard a problem is call well-posed if
1 The problem has a solution (existence)
2 The solution is unique (uniqueness)
3 The solution depends continuously on the data (stability)

The problem (1) is well-posed.

If a condition fails, the problem is called ill-posed.

Exercise 1
Consider the inverse Poisson problem: Given u = Kf ∈ L2(Ω) from (1), find
f ∈ L2(Ω).

Is the problem well-posed?
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2 Integration by parts, Green’s formulae and weak derivatives
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Fundamental theoremofcalculus

In one dimension ∫ b

a
F ′(x)dx = [F ]ba = F (b)− F (a).

Integration by parts formula for u, v ∈ C1([a,b]) :∫ b

a
u′vdx = −

∫ b

a
uv ′dx + [uv ]ba
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Inhigherdimensions

Divergence theorem ∫
Ω

∇ · F dx =

∫
∂Ω

ν · F dS

ν

∂Ω

Ω

1

F

Integration by parts: ∫
Ω

uxj v dx = −
∫

Ω

uvxj dx +

∫
∂Ω

νjuv dS.

or by stacking the partial derivatives∫
Ω

∇uv dx = −
∫

Ω

u∇v dx +

∫
∂Ω

νuv dS.
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Weakderivative

If v ∈ C∞C (Ω) the formula simply looks∫
Ω

uxj v dx = −
∫

Ω

uvxj dx

Definition:
Let u ∈ L1

loc(Ω). Then we call w ∈ L1
loc(Ω) the weak derivative of u wrt. xj provided

that for all v ∈ C∞C (Ω) ∫
Ω

wv dx = −
∫

Ω

uvxj dx .
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Green’s formulae

∫
Ω

u∆v dx +

∫
Ω

∇u · ∇v dx =

∫
∂Ω

u
∂v
∂ν

dS (4)∫
Ω

u∆v − v∆u dx =

∫
∂Ω

u
∂v
∂ν
− v

∂u
∂ν

dS (5)

Apply (5) to u solving the Poisson problem and v = G(·, y) from

−∆G(·, y) = δy in Ω,

G(·, y) = 0 on ∂Ω

shows the formula from before

−u(y) +

∫
Ω

G(x , y)f (x)dx = 0.
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FundamentalsolutionandGreen’s functions
The fundamental solution of the Laplace equation ∆u = 0 is in two dimensions

Φ(x) = − 1
2π

log |x |, −∆Φ(x − y) = δy .

The Dirichlet Green’s function satisfies the same PDE, so

G(x , y) = Φ(x − y) + Hy (x)

with H being harmonic defined by

−∆Hy = 0, Hy (x) = −Φ(x − y) for x ∈ ∂Ω.

Neumann function Ny satisfies

−∆Ny = δy ,
∂

∂ν
Ny = − 1

|∂Ω|
on ∂Ω.
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3 Sobolev spaces and elliptic PDE’s
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Sobolevspaces

H1(Ω) =
{

u ∈ L2(Ω) : ∇u ∈ L2(Ω)
}
.

Inner product:

(u, v)H1(Ω) =

∫
Ω

(uv +∇u · ∇v) dx

and induced norm

‖u‖2
H1(Ω) =

∫
Ω

(
|u|2 + |∇u|2

)
dx .
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Sobolevspaces -Tracespaces
Restriction – the trace – to the boundary is well defined in H1(Ω)

T : H1(Ω)→ L2(∂Ω)

u 7→ u|∂Ω.

Boundary spaces:

Range(T ) = H1/2(∂Ω) ⊂ L2(∂Ω)

H−1/2(∂Ω) = (H1/2(∂Ω))∗

In particular we write

H1
0 (Ω) =

{
u ∈ H1(Ω) : u|∂Ω = 0

}
.

Poincaré inequality for functions in H1
0 (Ω)

‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω).
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Weaksolutionof thegeneralizedPoissonequation
Consider

−∇ · A∇u = f in Ω,

u = 0 on ∂Ω.
(6)

Here A : Ω→ Rnxn is symmetric and satisfies for all ξ ∈ Rn, |ξ|2 = 1 (a.e. x)

0 < a ≤ ξT A(x)ξ ≤ b <∞. (Coercivity/ellipticity)

Multiply by function v ∈ C∞C (Ω) and integrate by parts

−
∫

Ω

∇ · A∇uvdx =

∫
Ω

A∇u · ∇vdx +

∫
∂Ω

(ν · A∇u)v dS

=

∫
Ω

fvdx .

We call a function u ∈ H1
0 (Ω) a weak solution to (6) provided that for all v ∈ H1

0 (Ω)∫
Ω

A∇u · ∇vdx =

∫
Ω

fvdx . (7)
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Lax-MilgramTheorem

In the Hilbert space H, Assume that the bilinear form a : H × H 7→ R satisfies for
some α, β > 0 and all u, v ∈ H

1 |a(u, v)| ≤ α‖u‖‖v‖,
2 β‖u‖2 ≤ a(u,u).

Then for any functional f ∈ H∗ the problem

a(u, v) = f (v) for all v ∈ H

has a unique solution u ∈ H with ‖u‖ ≤ C‖f‖.

January 25, 2021 IPwin2021 - Kim Knudsen - DTU Compute 28A primer on PDE’s



Well-posedenessofPoissonproblem

The Poisson equation has a unique weak solution in H1
0 (Ω)

Proof: With H = H1
0 (Ω)

a(u, v) =

∫
Ω

A∇u · ∇v dx , f (v) =

∫
Ω

fv dx

the assumptions from Lax-Milgram are satisfied: a is a bilinear form on H1
0 (Ω) and

f ∈ [H1
0 (Ω)]∗ = H−1(Ω).

1 |a(u, v)| ≤ b‖∇u‖L2(Ω)‖∇v‖L2(Ω) ≤ b‖u‖H1
0 (Ω)‖v‖H1

0 (Ω). (Cauchy-Schwarz)

2 a‖u‖2
H1

0 (Ω)
≤ aC‖∇u‖2

L2(Ω) ≤ C
∫

Ω
A∇u · ∇udx = Ca(u,u). (Poincaré +

ellipticity)
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Conductivityequation

A voltage potential u ∈ H1(Ω) generated by boundary voltage f ∈ H1/2(∂Ω) satisfies
conductivity equation

∇ · σ∇u = 0 in Ω,

u|∂Ω = f .
ν

fj, gj

∂Ω

Ω
σ(x)

1

Exercise 2: Show that the above equation has a unique solution in H1(Ω).

(Hint: consider ũ = u − f̃ for some f̃ ∈ H1(Ω) with f̃ |∂Ω = f and use the previous
uniqueness result)
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TheCalderónproblem
Measure electric normal current through at the boundary

g = ν · σ∇u|∂Ω.

Dirichlet to Neumann (voltage to current) map

Λσ : H1/2(∂Ω)→ H−1/2(∂Ω)

f 7→ g

weakly defined by

〈Λσf ,h〉 =

∫
∂Ω

(Λσf )h dS =

∫
Ω

σ∇u · ∇v dx , (any) v |∂Ω = h ∈ H1/2(∂Ω).

Inverse problem (1980): How can we stably recover σ from knowledge of Λσ?

Exercise 3: Show that Λσ is well-defined in the weak form.
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Electrical ImpedanceTomography
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Thanks for your attention
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