

IPwin2021

A primer on PDE's

Partial Differential Equations

The math of the physical world:

- Mechanics: Newton's laws of motion
- Quantum mechanics: Schrödinger's equations
- Electro-magnetism: Maxwell's system
- Fluid dynamics: Navier-Stokes
- Biology: Cell membranes, Pandemic modeling!

Comes in $1, 2, 3, \ldots$ dimensions.

Linear and non-linear models.

Elliptic, parabolic, hyperbolic.

In general for differential operator L

$$L(u) = 0$$

Agenda

- 1 The Poisson equation and the Helmholtz equation
- 2 Integration by parts, Green's formulae and weak derivatives
- Sobolev spaces and elliptic PDE's

References:

Walter Strauss, Introduction to Partial Differential Equations, second ed., Wiley 2008 Lawrence C. Evans, Partial Differential Equations, second ed., AMS 2010.

1 The Poisson equation and the Helmholtz equation

DTU

The Poisson equation

In the unit circle $\Omega = B(0, 1) \subset \mathbb{R}^2$ consider

$$-\Delta u = f \text{ in } \Omega,$$
$$u = 0 \text{ on } \partial \Omega.$$

(1)

Notation

$$\begin{aligned} \Delta u &= \nabla \cdot \nabla u \\ \Delta u &= u_{xx} + u_{yy} \end{aligned} (\text{Cartesian coordinates } (x, y)) \\ \Delta u &= u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta} \end{aligned} (\text{Polar coordinates} (r, \theta))$$

Models electric potential *u* and current $-\nabla u$ due to interior source *f* in a disk shaped conducting medium Ω .

6

The eigenvalue problem

Dirichlet Laplace

 $\begin{aligned} -\Delta \mathbf{v} &= \lambda \mathbf{v} \text{ in } \Omega, \\ \mathbf{v} &= \mathbf{0} \text{ on } \partial \Omega. \end{aligned}$

Separation of polar variables $v(r, \theta) = R(r)\Theta(\theta)$ leads to Bessel's equation

$$r^{2} \frac{\partial^{2} R}{\partial r^{2}} + r \frac{\partial R}{\partial r} + (r^{2} - n^{2})R = 0, \quad 0 < r < 1;$$
with $R(0)$ bounded and $R(1) = 0,$
(2)

and

$$\Theta'' + n^2 \Theta = 0$$
 in \mathbb{R} (+ periodic BC).

Bessel's equation of order *n* solved by Bessel functions of the first kind $J_n(\beta_{mn}r)$; β_{mn} is the *m*'th zero of J_n .

Bessel functions

The Dirichlet eigenfunctions and eigenvalues

$$v_{mn}(r, \theta) = c_{mn}J_n(\beta_{mn}r)e^{in\theta}; \quad \lambda_{mn} = \beta_{mn}^2.$$

Facts

- $\{v_{mn}\}_{m=1,n=0}^{\infty}$ constitute an orthonormal basis for $L^{2}(\Omega)$.
- Weyl's law (1911): The number of eigenvalues N(λ) below the number λ is asymptotically

$$rac{N(\lambda)}{\lambda}\sim 4$$

and consequently
$$\lambda_{mn} \to \infty$$
.

a

Solution to Poisson's problem

We find for $-\Delta u = f \in L^2(\Omega)$ with

the unique solution *u* to the Poisson problem

$$u = \sum_{m,n} \frac{f_{mn}}{\lambda_{mn}} v_{mn}$$

with stability estimate

$$\|u\|_{L^2(\Omega)}\leq \|f\|_{L^2(\Omega)}.$$

Integral kernel - Green's function

Define for the Poisson problem the solution operator

 $egin{aligned} \mathcal{K}: L^2(\Omega) &
ightarrow L^2(\Omega) \ f &\mapsto u \end{aligned}$

This is an integral operator

$$u(y) = Kf(y) = \int_{\Omega} G(x, y)f(x)dx,$$

with G denoting the Dirichlet Green's function

$$-\Delta G(\cdot, y) = \delta_y \text{ in } \Omega, \qquad G(\cdot, y) = 0 \text{ on } \partial \Omega$$

formally represented by

$$G(x, y) = \sum_{m,n} \frac{1}{\lambda_{mn}} v_{mn}(y) v_{mn}(x).$$

DTU

The Helmholtz equation

For wave number k and r = |x|

$$\Delta u + k^2 u = -f \text{ in } \mathbb{R}^2$$

$$\lim_{r \to \infty} \sqrt{r} \left(\partial_r u - iku \right) = 0 \quad \text{(Sommerfeld radiation condition)} \tag{3}$$

The Helmholtz equation

For wave number
$$k$$
 and $r = |x|$

 $\Delta u + k^2 u = -f \text{ in } \mathbb{R}^2$ $\lim_{r \to \infty} \sqrt{r} \left(\partial_r u - iku \right) = 0 \quad \text{(Sommerfeld radiation condition)}$

Hankel functions

$$H_n^{(1)} = J_n + iY_n; \quad H_n^{(2)} = J_n - iY_n$$

with Y_n are the Bessel function of second kind. Unique solution to (3) given by volume potential

$$u(x) = -\int_{\mathbb{R}^2} H_0^{(1)}(|x-y|)f(y)dy.$$

(3)

Well-posed vs ill-posed

According to Hadamard a problem is call well-posed if

- **1** The problem has a solution (existence)
- 2 The solution is unique (uniqueness)
- The solution depends continuously on the data (stability) The problem (1) is well-posed.

If a condition fails, the problem is called ill-posed.

Well-posed vs ill-posed

According to Hadamard a problem is call well-posed if

- 1 The problem has a solution (existence)
- 2 The solution is unique (uniqueness)

The solution depends continuously on the data (stability)The problem (1) is well-posed.

If a condition fails, the problem is called ill-posed.

Exercise 1

Consider the **inverse Poisson problem**: Given $u = Kf \in L^2(\Omega)$ from (1), find $f \in L^2(\Omega)$.

Is the problem well-posed?

2 Integration by parts, Green's formulae and weak derivatives

Fundamental theorem of calculus

In one dimension

$$\int_a^b F'(x)dx = [F]_a^b = F(b) - F(a).$$

Integration by parts formula for $u, v \in C^1([a, b])$:

$$\int_a^b u' v dx = -\int_a^b u v' dx + [uv]_a^b$$

In higher dimensions

Divergence theorem

$$\int_{\Omega}
abla \cdot F \ dx = \int_{\partial \Omega}
u \cdot F \ dS$$

Integration by parts:

$$\int_{\Omega} u_{x_j} v \, dx = -\int_{\Omega} u v_{x_j} dx + \int_{\partial \Omega} v_j u v \, dS.$$

or by stacking the partial derivatives

$$\int_{\Omega} \nabla u v \, dx = -\int_{\Omega} u \nabla v \, dx + \int_{\partial \Omega} v \, u v \, dS$$

Weak derivative

If $v \in C^{\infty}_{C}(\overline{\Omega})$ the formula simply looks

$$\int_{\Omega} u_{x_j} v \, dx = - \int_{\Omega} u v_{x_j} \, dx$$

Definition:

Let $u \in L^1_{loc}(\Omega)$. Then we call $w \in L^1_{loc}(\Omega)$ the weak derivative of u wrt. x_j provided that for all $v \in C^{\infty}_{C}(\Omega)$

$$\int_{\Omega} wv \, dx = -\int_{\Omega} uv_{x_j} \, dx.$$

Green's formulae

DTU

$$\int_{\Omega} u \Delta v \, dx + \int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\partial \Omega} u \frac{\partial v}{\partial \nu} \, dS \tag{4}$$
$$\int_{\Omega} u \Delta v - v \Delta u \, dx = \int_{\partial \Omega} u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} \, dS \tag{5}$$

Green's formulae

DTU

$$\int_{\Omega} u \Delta v \, dx + \int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\partial \Omega} u \frac{\partial v}{\partial \nu} \, dS \qquad (4)$$
$$\int_{\Omega} u \Delta v - v \Delta u \, dx = \int_{\partial \Omega} u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} \, dS \qquad (5)$$

Apply (5) to *u* solving the Poisson problem and $v = G(\cdot, y)$ from

$$-\Delta G(\cdot, y) = \delta_y \text{ in } \Omega,$$

 $G(\cdot, y) = 0 \text{ on } \partial \Omega$

shows the formula from before

$$-u(y)+\int_{\Omega}G(x,y)f(x)dx=0.$$

Fundamental solution and Green's functions

The fundamental solution of the Laplace equation $\Delta u = 0$ is in two dimensions

$$\Phi(x) = -\frac{1}{2\pi} \log |x|, \quad -\Delta \Phi(x-y) = \delta_y.$$

The Dirichlet Green's function satisfies the same PDE, so

$$G(x,y) = \Phi(x-y) + H_y(x)$$

with *H* being harmonic defined by

$$-\Delta H_y = 0, \qquad H_y(x) = -\Phi(x-y) ext{ for } x \in \partial \Omega.$$

Neumann function N_y satisfies

$$-\Delta N_y = \delta_y, \qquad rac{\partial}{\partial
u} N_y = -rac{1}{|\partial \Omega|} ext{ on } \partial \Omega.$$

Sobolev spaces and elliptic PDE's

DTU

Sobolev spaces

$$H^1(\Omega) = \left\{ u \in L^2(\Omega) : \nabla u \in L^2(\Omega)
ight\}.$$

Inner product:

$$(u,v)_{H^1(\Omega)} = \int_{\Omega} (uv + \nabla u \cdot \nabla v) \, dx$$

and induced norm

$$||u||^2_{H^1(\Omega)} = \int_{\Omega} \left(|u|^2 + |\nabla u|^2 \right) dx.$$

Sobolev spaces - Trace spaces

Restriction – the trace – to the boundary is well defined in $H^1(\Omega)$

 $T: H^1(\Omega) o L^2(\partial \Omega)$ $u \mapsto u|_{\partial \Omega}.$

Boundary spaces:

$$egin{aligned} & \operatorname{Range}(\mathcal{T}) = H^{1/2}(\partial\Omega) \subset L^2(\partial\Omega) \ & H^{-1/2}(\partial\Omega) = (H^{1/2}(\partial\Omega))^* \end{aligned}$$

In particular we write

$$H^1_0(\Omega) = \left\{ u \in H^1(\Omega) : u|_{\partial\Omega} = 0
ight\}.$$

Poincaré inequality for functions in $H_0^1(\Omega)$

$$\|u\|_{L^2(\Omega)} \leq C \|\nabla u\|_{L^2(\Omega)}.$$

Weak solution of the generalized Poisson equation

Consider

$$-\nabla \cdot A \nabla u = f \text{ in } \Omega,$$

$$u = 0 \text{ on } \partial \Omega.$$
 (6)

Here $A : \Omega \to R^{nxn}$ is symmetric and satisfies for all $\xi \in \mathbb{R}^n$, $|\xi|_2 = 1$ (a.e. x) $0 < a \le \xi^T A(x) \xi \le b < \infty$. (Coercivity/ellipticity)

Weak solution of the generalized Poisson equation

Consider

$$-\nabla \cdot A \nabla u = f \text{ in } \Omega,$$

$$u = 0 \text{ on } \partial \Omega.$$
 (6)

Here $A : \Omega \to \mathbb{R}^{n \times n}$ is symmetric and satisfies for all $\xi \in \mathbb{R}^n$, $|\xi|_2 = 1$ (a.e. x) $0 < a \le \xi^T A(x) \xi \le b < \infty$. (Coercivity/ellipticity)

Multiply by function $v \in C_C^{\infty}(\Omega)$ and integrate by parts

$$\begin{split} -\int_{\Omega} \nabla \cdot A \nabla u v dx &= \int_{\Omega} A \nabla u \cdot \nabla v dx + \int_{\partial \Omega} (\nu \cdot A \nabla u) v \, dS \\ &= \int_{\Omega} f v dx. \end{split}$$

We call a function $u \in H_0^1(\Omega)$ a weak solution to (6) provided that for all $v \in H_0^1(\Omega)$

$$\int_{\Omega} A \nabla u \cdot \nabla v dx = \int_{\Omega} f v dx.$$
(7)

Lax-Milgram Theorem

In the Hilbert space *H*, Assume that the bilinear form $a : H \times H \mapsto \mathbb{R}$ satisfies for some $\alpha, \beta > 0$ and all $u, v \in H$

$$|a(u, v)| \leq \alpha \|u\| \|v\|,$$

2
$$\beta \|u\|^2 \leq a(u, u).$$

Then for any functional $f \in H^*$ the problem

a(u, v) = f(v) for all $v \in H$

has a unique solution $u \in H$ with $||u|| \leq C||f||$.

Well-posedeness of Poisson problem

The Poisson equation has a unique weak solution in $H_0^1(\Omega)$ **Proof:** With $H = H_0^1(\Omega)$

$$a(u,v) = \int_{\Omega} A
abla u \cdot
abla v \, dx, \quad f(v) = \int_{\Omega} f v \, dx$$

the assumptions from Lax-Milgram are satisfied: *a* is a bilinear form on $H_0^1(\Omega)$ and $f \in [H_0^1(\Omega)]^* = H^{-1}(\Omega)$.

$$ellipticity) ellipticity el$$

Conductivity equation

A voltage potential $u \in H^1(\Omega)$ generated by boundary voltage $f \in H^{1/2}(\partial \Omega)$ satisfies conductivity equation

$$abla \cdot \sigma
abla u = \mathbf{0} ext{ in } \Omega,$$

 $u|_{\partial \Omega} = f.$

Conductivity equation

A voltage potential $u \in H^1(\Omega)$ generated by boundary voltage $f \in H^{1/2}(\partial \Omega)$ satisfies conductivity equation

$$abla \cdot \sigma
abla u = \mathbf{0} ext{ in } \Omega,$$
 $u|_{\partial \Omega} = f.$

Exercise 2: Show that the above equation has a unique solution in $H^1(\Omega)$. (Hint: consider $\tilde{u} = u - \tilde{f}$ for some $\tilde{f} \in H^1(\Omega)$ with $\tilde{f}|_{\partial\Omega} = f$ and use the previous uniqueness result)

The Calderón problem

Measure electric normal current through at the boundary

 $\boldsymbol{g} = \boldsymbol{\nu} \cdot \boldsymbol{\sigma} \nabla \boldsymbol{u}|_{\partial \Omega}.$

Dirichlet to Neumann (voltage to current) map

$$egin{aligned} & \Lambda_{\sigma}\colon H^{1/2}(\partial\Omega) o H^{-1/2}(\partial\Omega)\ & f\mapsto g \end{aligned}$$

weakly defined by

$$\langle \Lambda_{\sigma} f, h \rangle = \int_{\partial \Omega} (\Lambda_{\sigma} f) h \, dS = \int_{\Omega} \sigma \nabla u \cdot \nabla v \, dx, \qquad (\text{any}) \, v|_{\partial \Omega} = h \in H^{1/2}(\partial \Omega).$$

Inverse problem (1980): How can we stably recover σ from knowledge of Λ_{σ} ?

The Calderón problem

Measure electric normal current through at the boundary

 $\boldsymbol{g} = \boldsymbol{\nu} \cdot \boldsymbol{\sigma} \nabla \boldsymbol{u}|_{\partial \Omega}.$

Dirichlet to Neumann (voltage to current) map

$$egin{aligned} & \Lambda_{\sigma} \colon H^{1/2}(\partial\Omega) o H^{-1/2}(\partial\Omega) \ & f \mapsto g \end{aligned}$$

weakly defined by

$$\langle \Lambda_{\sigma} f, h \rangle = \int_{\partial \Omega} (\Lambda_{\sigma} f) h \, dS = \int_{\Omega} \sigma \nabla u \cdot \nabla v \, dx, \qquad (\text{any}) \, v|_{\partial \Omega} = h \in H^{1/2}(\partial \Omega).$$

Inverse problem (1980): How can we stably recover σ from knowledge of Λ_{σ} ?

Exercise 3: Show that Λ_{σ} is well-defined in the weak form.

DTU

Electrical Impedance Tomography

Thanks for your attention