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Scattering

H Au+ k2nu = 0 in R
// n=1in Q°
Usge n:no#lan

Ujn = Uk, ipn: incident wave

Aug in + k:2uk,m =0 inR%

Use = U sc: Scattered wave, with Sommerfeld radiation condition

d—1 (9 . . . .
lim r 2 <uk se — tkug Sc) =0 uniformly for all directions.
r—00 or 7 ’
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Non-scattering and ITEP
Suppose there exits (k, u i) such that ug s = 0 in Q°. Then

Auk,in + kQUk,in =0

in €,
AUk,sc + k2nouk,sc = kQ(l - nO)uk,in

Uk,sc = OpUp ¢ = 0 on 0f).

— Alternatively uy, 4. satisfies

(A +k?)

p—1 (A + ano)uhsc =0inQ

with Uk sc = OpU,5c = 0 on 0f)
— the interior transmission eigenvalue problem (ITEP)
and uy, i, is then defined by

1

n T 7974 N A k2 sc -
U, ]{:2(1 — no) ( + 7”L())U]€7

— Notice: this (ITEP) is only a necessary condition for
Non-scattering.
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We restrict our attention to real wave numbers k.
» Observation:

</ = {non-scattering wave numbers} C {ITEV} := %
» Known:
# 98 = oo(countable) cf., [Cakoni-Colton-Haddar (book)]
» Questions:

o =B Yol =00 ?
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» Spherically stratified media n = n(r) [Colton-Monk '88]
Eigenfunctions/non-scattering incident waves: Herglotz
functions

> o/ =0 S %A no non-scattering wave numbers
Media (domains) with singularities at the shape:

» corner, edge
[Blasten, Paivarinta, Sylvester, Salo, Vesalainen, Elschner, Hu,
Liu, Xiao, Cakoni, Cao, Diao, etc.]

— Let us, as an example, consider the case 2 = B (ball of radius
1) in R? with ng a constant.
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We take ui,(x) = e~ ], (kr).
This solves (A + k?)u;, = 0, provided J,, is the (bounded)
solution to

2

d d
24— 2_m®)| J,.(r)=0. BESSEL'S EQUATION
"o +rdr + (r* =m?)| Ju(r) =0 SSEL'S EQUATIO

It corresponds to us. = 0 in Q¢ (and thus also to an ITEV) iff we
can find a solution to

(A +En(z)u=0 inR*, withu=e"™],(kr) inQ°.

This solution must have the form u(x) = Ae="™.J,, (k\/nor)
inside €2, and so we have us. = 0 in ¢ (and thus also an ITEV) iff
the system

0T (k/T0) A — Ty ()

has a solution.
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that is iff dy (k) == Jon (ky/T0) Tl (k) — v/Ti0 Ty (ky/T00) Jon () =

A simple calculation (based on known asymptotics of Bessel
functions) yields for 0 < ng < 1:

2jm — % 2jm+ %
A (2 d dp(=—2)<0
(1_\/170)>0 an (1—\/770)<

so there exists infinitely many zeroes {k;}72, for d;,(-) with

2jm — 1 27 + 2

1—,/710 J 1—,/710

for 1 < ng :
(T2 S and d(ww+%)<0
—_ = a —_— =
™ Jnog — 1 n ™ g — 1

so there exists infinitely many zeroes {k;}32; for d,(-) with

27 + T 2jm + 3
7]7-( 2 <k¢j<7j 2
q/no—l \/no—l
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for each density e~
We note that
1 » _— 1 (™ .. B
- e zmﬁfezkxg & = — e zmé)ezk\a:|cos(0 0z) do
2 Js1 27 J_,
_ e—imeml/ﬂ e—imﬁeik\x|cos(9) do
2 J_,

= e tmbam g (K|x])

So e~ J,..(kr) is a so-called Herglotz function, a function of the
form = Js1 o(0¢)et** € d¢, with density ¢(6) = (—i)me ™",

So what happens if you perturb the disk to an ellipse?
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Theorem (Herglotz Waves [Vogelius-Xiao '20])
Let p € C(S)\{0} and ng € Ry \{1}. Let Q denote the ellipse

Q:QA,B:{(:IA,JZQ) : 7+7<1}.

There exists a positive constant € (independent of ¢), so that if
0< |§ — 1| < € then one can find at most finitely many positive
wave numbers k = kj,j =1,2,..., N, (possibly depending on ¢)
for which the problem

2 2 .
Auy se + E*noug sc = k*(1 — no)ug,in in €,
u;wc = ,,uk”gc =0 on 69

admits a solution uy, s., with

ki = Hlk,0)(@) = 5 [ 6(0)eO ap

—T
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Cont'd

» Consequence: At most finitely many non-scattering wave
numbers for (2, ng, H[k, ¢]).

» Some generalizations ([Vogelius-Xiao, in preparation]):
» Ellipses with

1
. <BYA’<1+my, A+B.
T / V1o #

» Small C? perturbations of ellipses.

» Small C? perturbations of disks.

What happens for other incident waves, e.g., plane waves e**#¢ ?
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» Suppose €2 is C1*, and suppose there exists a non-scattering
wave number for (Q, ng, e**€). Then Q must be real analytic
(in other words its boundary is a real analytic hypersurface).

» If Q2 is a ball then there are exists no non-scattering wave
number for (€, ng, e?#*<).

» This raises a natural question: if 2 is real analytic but not a
ball what might one say about the number of non-scattering
wave numbers for (€2, ng, e?*¢)
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Theorem (Plane Waves [Vogelius-Xiao '20])
Let ) be a bounded, strictly convex C% domain in R?, and
suppose ng € Ry \{1}. Given uy i, = etk for a fixed direction

€ € S, there exist at most finitely many positive wave numbers
k=kj j=1,...,N, such that

Auy s + anouk,sc = k:2(1 — No)Uk,in in €,
Uk,sc = 8V'Uflc,sc =0 on 897

admits a solution uy, ..

» Consequence: At most finitely many non-scattering wave
numbers for (€, ng, 7€),
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Suppose there exists a solution uy, 5. to

Auk,in + k2ukz,in =0 .
in ,

2 2
Auk,sc +k nouk,sc = k (1 - nO)uk,in

Uk sc = OpUp,5c = 0 on 0f).

then for any solution w to Aw + k?now = 0,

k> / (1 —ngp) upinwdr = / w Oy Uk s — Uk, sc Opw do(x) = 0.
Q o0

We may in particular take w = e’V 7% for any 5 € St
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/ (1 — n0) U in €V dz = 0
Q

Approach:

» if the are are infinitely many non-scattering wave numbers
then the above identity holds for infinitely many & (for all 7).
The k’s must be countable and tend to co (they are
transmission eigenvalues).

» The left hand side is an oscillatory integral, the asymptotics of
which we may derive by the method of stationary phase.
> As a result we obtain a contradiction when (1) u ;, is a plane

wave or (2) when wy, ;, is a Herglotz wave and €2 is a proper
ellipse.
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Connection with Schiffer's conjecture

Q) always scatters if:
Auk,in + k2ukz,in =0

A ge + K*noug se = k*(1 — no)up i in Q,
Uk, sc = 8yuk,sc =0 on 0.

has no solution uy, 5. for any wave number k.

We shall say a domain has the Schiffer Property if the problem

Av+ v =1 in Q,
v=0,0=0 on 0f2.

has no solution for any .

This is equivalent to
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The problem

Aw+ A w =0 in 0,
dw =0, w= const, on 0f).
has no non-trivial solution for A # 0 or alternatively: there are no

non-trivial Neumann eigenfunctions (for the Laplacian, A) with
constant Dirichlet boundary trace.

Conjecture: The only simply connected domains in R? that fail to
have the Schiffer Property are balls.

Note that: balls have infinitely many Neumann eigenvalues with
corresponding eigenfunctions of constant Dirichlet boundary trace.
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Some interesting (and related) results:

» Any Lipschitz domain 2 that fails to have the Schiffer
Property, is real analytic.
[Williams '81]

> If Q is a simply connected Lipschitz domain with infinitely
many Neumann eigenvalues with corresponding eigenfunctions
of constant Dirichlet trace, then Q is a ball.
[Berenstein-Yang '87, Vogelius '94]
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