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Introduction

Finiteness of Non-scattering Wave Numbers

Connection with Schiffer’s conjecture



Scattering

Ω, n

uin

usc

∆u+ k2nu = 0 in Rd

n = 1 in Ωc

n = n0 6= 1 in Ω

u = uin + usc

uin = uk,in: incident wave

∆uk,in + k2uk,in = 0 in Rd;

usc = uk,sc: scattered wave, with Sommerfeld radiation condition

lim
r→∞

r
d−1
2

(
∂

∂r
uk,sc − ikuk,sc

)
= 0 uniformly for all directions.
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Non-scattering and ITEP
Suppose there exits (k, uk,in) such that uk,sc = 0 in Ωc.

Then

∆uk,in + k2uk,in = 0

∆uk,sc + k2n0uk,sc = k2(1− n0)uk,in
in Ω,

uk,sc = ∂νuk,sc = 0 on ∂Ω.

— Alternatively uk,sc satisfies

(∆ + k2)
1

n0 − 1
(∆ + k2n0)uk,sc = 0 in Ω

with uk,sc = ∂νuk,sc = 0 on ∂Ω

— the interior transmission eigenvalue problem (ITEP)
and uk,in is then defined by

uk,in =
1

k2(1− n0)
(∆ + k2n0)uk,sc .

— Notice: this (ITEP) is only a necessary condition for
Non-scattering.
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We restrict our attention to real wave numbers k.

I Observation:

A := {non-scattering wave numbers} ⊂ {ITEV} := B

I Known:

#B =∞(countable) cf., [Cakoni-Colton-Haddar (book)]

I Questions:

A = B ? #A =∞ ?
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Available results

I A = B: (countably) infinitely many non-scattering wave
numbers.

I Spherically stratified media n = n(r) [Colton-Monk ’88]
Eigenfunctions/non-scattering incident waves: Herglotz
functions

I A = ∅ $ B: no non-scattering wave numbers
Media (domains) with singularities at the shape:

I corner, edge
[Bl̊asten, Päivärinta, Sylvester, Salo, Vesalainen, Elschner, Hu,
Liu, Xiao, Cakoni, Cao, Diao, etc.]

— Let us, as an example, consider the case Ω = B1 (ball of radius
1) in R2 with n0 a constant.
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[Bl̊asten, Päivärinta, Sylvester, Salo, Vesalainen, Elschner, Hu,
Liu, Xiao, Cakoni, Cao, Diao, etc.]

— Let us, as an example, consider the case Ω = B1 (ball of radius
1) in R2 with n0 a constant.



Available results

I A = B: (countably) infinitely many non-scattering wave
numbers.
I Spherically stratified media n = n(r) [Colton-Monk ’88]

Eigenfunctions/non-scattering incident waves: Herglotz
functions

I A = ∅ $ B: no non-scattering wave numbers
Media (domains) with singularities at the shape:
I corner, edge
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We take uin(x) = e−imθJm(kr).

This solves (∆ + k2)uin = 0, provided Jm is the (bounded)
solution to[
r2 d

2

dr2
+ r

d

dr
+ (r2 −m2)

]
Jm(r) = 0 . BESSEL’S EQUATION

It corresponds to usc = 0 in Ωc (and thus also to an ITEV) iff we
can find a solution to

(∆ + k2n(x))u = 0 in R2 , with u = e−imθJm(kr) in Ωc .

This solution must have the form u(x) = Ae−imθJm(k
√
n0r)

inside Ω, and so we have usc = 0 in Ωc (and thus also an ITEV) iff
the system

Jm(k
√
n0)A− Jm(k) = 0

√
n0J

′
m(k
√
n0)A− J ′m(k) = 0

has a solution.
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that is iff dm(k) := Jm(k
√
n0)J ′m(k)−√n0J

′
m(k
√
n0)Jm(k) = 0 .

A simple calculation (based on known asymptotics of Bessel
functions) yields for 0 < n0 < 1 :

dm(
2jπ − π

2

1−√n0
) > 0 and dm(

2jπ + π
2

1−√n0
) < 0

so there exists infinitely many zeroes {kj}∞j=1 for dm(·) with

2jπ − π
2

1−√n0
< kj <

2jπ + π
2

1−√n0

for 1 < n0 :

dm(
2jπ + π

2√
n0 − 1

) > 0 and dm(
2jπ + 3π

2√
n0 − 1

) < 0

so there exists infinitely many zeroes {kj}∞j=1 for dm(·) with

2jπ + π
2√

n0 − 1
< kj <

2jπ + 3π
2√

n0 − 1
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I this was an example of A = B: both with countably many
elements, and infinitely many non-scattering wave numbers
for each density e−imθ.

We note that

1

2π

∫
S1

e−imθξeikx·ξ dξ =
1

2π

∫ π

−π
e−imθeik|x| cos(θ−θx) dθ

= e−imθx
1

2π

∫ π

−π
e−imθeik|x| cos(θ) dθ

= e−imθximJm(k|x|)

So e−imθJm(kr) is a so-called Herglotz function, a function of the
form 1

2π

∫
S1 φ(θξ)e

ikx·ξ dξ, with density φ(θ) = (−i)me−imθ.

So what happens if you perturb the disk to an ellipse?
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Theorem (Herglotz Waves [Vogelius-Xiao ’20])

Let φ ∈ C∞(S1)\{0} and n0 ∈ R+\{1}. Let Ω denote the ellipse

Ω = ΩA,B = {(x1, x2) :
x2

1

A2
+
x2

2

B2
< 1 } .

There exists a positive constant ε (independent of φ), so that if
0 < |BA − 1| < ε then one can find at most finitely many positive
wave numbers k = kj ,j = 1, 2, . . . , N , (possibly depending on φ)
for which the problem{

∆uk,sc + k2n0uk,sc = k2(1− n0)uk,in in Ω,

uk,sc = ∂νuk,sc = 0 on ∂Ω

admits a solution uk,sc, with

uk,in = H[k, φ](x) =
1

2π

∫ π

−π
φ(θ)eikξ(θ)·x dθ .
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Cont’d

I Consequence: At most finitely many non-scattering wave
numbers for (Ω, n0,H[k, φ]).

I Some generalizations ([Vogelius-Xiao, in preparation]):

I Ellipses with

1

1 +
√
n0

< B2/A2 < 1 +
√
n0, A 6= B.

I Small C2 perturbations of ellipses.
I Small C2 perturbations of disks.

What happens for other incident waves, e.g., plane waves eikx·ξ ?
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I Suppose Ω is C1,α, and suppose there exists a non-scattering
wave number for (Ω, n0, e

ikx·ξ). Then Ω must be real analytic
(in other words its boundary is a real analytic hypersurface).

I If Ω is a ball then there are exists no non-scattering wave
number for (Ω, n0, e

ikx·ξ).

I This raises a natural question:

if Ω is real analytic but not a
ball what might one say about the number of non-scattering
wave numbers for (Ω, n0, e

ikx·ξ)
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Theorem (Plane Waves [Vogelius-Xiao ’20])

Let Ω be a bounded, strictly convex C2,α domain in R2, and
suppose n0 ∈ R+\{1}. Given uk,in = eikx·ξ, for a fixed direction
ξ ∈ S1, there exist at most finitely many positive wave numbers
k = kj , j = 1, . . . , N , such that{

∆uk,sc + k2n0uk,sc = k2(1− n0)uk,in in Ω,

uk,sc = ∂νuk,sc = 0 on ∂Ω,

admits a solution uk,sc.

I Consequence: At most finitely many non-scattering wave
numbers for (Ω, n0, e

ikx·ξ).
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An integral identity

Suppose there exists a solution uk,sc to

∆uk,in + k2uk,in = 0

∆uk,sc + k2n0uk,sc = k2(1− n0)uk,in
in Ω,

uk,sc = ∂νuk,sc = 0 on ∂Ω.

then for any solution w to ∆w + k2n0w = 0,

k2

∫
Ω

(1− n0)uk,inw dx =

∫
∂Ω
w ∂νuk,sc − uk,sc ∂νw dσ(x) = 0.

We may in particular take w = eik
√
n0 η·x for any η ∈ S1
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∫
Ω

(1− n0)uk,in e
ik
√
n0 η·x dx = 0

Approach:

I if the are are infinitely many non-scattering wave numbers
then the above identity holds for infinitely many k (for all η).
The k′s must be countable and tend to ∞ (they are
transmission eigenvalues).

I The left hand side is an oscillatory integral, the asymptotics of
which we may derive by the method of stationary phase.

I As a result we obtain a contradiction when (1) uk,in is a plane
wave or (2) when uk,in is a Herglotz wave and Ω is a proper
ellipse.
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Connection with Schiffer’s conjecture

Ω always scatters if:
∆uk,in + k2uk,in = 0{

∆uk,sc + k2n0uk,sc = k2(1− n0)uk,in in Ω,

uk,sc = ∂νuk,sc = 0 on ∂Ω.

has no solution uk,sc for any wave number k.

We shall say a domain has the Schiffer Property if the problem{
∆v + λv = 1 in Ω,

v = ∂νv = 0 on ∂Ω.

has no solution for any λ.

This is equivalent to
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The problem{
∆w + λw = 0 in Ω,

∂νw = 0, w = const, on ∂Ω.

has no non-trivial solution for λ 6= 0

or alternatively: there are no
non-trivial Neumann eigenfunctions (for the Laplacian, ∆) with
constant Dirichlet boundary trace.

Conjecture: The only simply connected domains in Rd that fail to
have the Schiffer Property are balls.

Note that: balls have infinitely many Neumann eigenvalues with
corresponding eigenfunctions of constant Dirichlet boundary trace.
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Some interesting (and related) results:

I Any Lipschitz domain Ω that fails to have the Schiffer
Property, is real analytic.
[Williams ’81]

I If Ω is a simply connected Lipschitz domain with infinitely
many Neumann eigenvalues with corresponding eigenfunctions
of constant Dirichlet trace, then Ω is a ball.
[Berenstein-Yang ’87, Vogelius ’94]
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