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Overview

(9 Differential geometric aspects of surfaces in 3D (no formulas)
(*) Riemannian metrics, connections, and geodesics
(+) Conductive Riemannian manifolds and some associated PDEs

(+) Curvature issues



Formula-free aspects of surfaces
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Formula-free aspects of surfaces

Theorem 1 (Hopf and Rinow, 1931). On a comple-
te surface there is a unique geodesic (shortest curve)
between any pair of (sufficiently close) points.




Formula-free aspects of surfaces

T heorem 2 (Pestov and Uhlmann, 2005). In a simple
domain €2 on a surface the boundary distances distyo w0
determine all the distances distqo. o in the domain.




Formula-free aspects of surfaces

T heorem 3 (Pestov and Uhlmann, 2005). In a simple
domain €2 on a surface the boundary distances distyo w0
determine all the distances distqo. o in the domain.




Formula-free aspects of surfaces

T heorem 4 (Pestov and Uhlmann, 2005). In a simple
domain €2 on a surface the boundary distances distyo « o0
determine all the distances distqo. o in the domain.




Formula-free aspects of surfaces




Pull-back of unit vectors




Indicatrix representation of the metric
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Indicatrix representation of the metric

Principle. The indicatrix field in the coordinate do-
main U is equivalent to a metric matrix field in U: At
each point there is a unique quadratic form g with ma-

trix
gi; = 9(ei,e5)

so that the indicatrix at p is:

I, ={V = ka-ek cTpU|g(V,V) = Zgij-’ui-’uj =1}



Indicatrix representation of the metric
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Indicatrix representation of the metric

With Riemann we may consider metrics induced from

well-known surfaces:




Indicatrix representation of the metric

— as well as metrics that are not inherited from surfaces
in Euclidean R3, e.g. the Poincaré disk and half-plane:




Next: Work in (U™, g)

Principle. we can (and will) express everything in
(U™ g), U C R"?, in terms of the metric matrix function

gp(eirej) = gij(@t,z2).

NB: In (the special) case of a parametrized surface
r(zl,z2), the matrix g;;(z!,z2) for the inherited pull-
back metric is

gij(t,2?) = J* (2t 2?) - J (=1, 2?)
where J is the Jacobian of the vector function r, i.e.

or Or ]
Oxl 922 ’
and J* denotes the transpose of J.

J(zl, 22) = [



Riemannian key concepts



Work in (U™, g)

Observation. The usual derivative of a vector field
V(t) =V, along a curve v in R does NOT work:

V() — V(to)>

t— 1o

d .



Work in (U™, g)

Observation. The usual derivative of a vector field
V(t) =V, along a curve v in R does NOT work:

(V(t) - V(to)>

t— 1o

d :
VO, = i,

Because the difference V(t) — V(tg) does not make sen-
se.



Work in (U™, g)

Observation. The usual derivative of a vector field
V(t) =V, along a curve v in R does NOT work:

(V(t) - V(to)>

t— 1o

d :
VO, = i,

Because the difference V(t) — V(tg) does not make sen-
se.

Because the two vectors V(t) and V (tg) belong to dif-
ferent tangent spaces, T,y(t)u and T’y(to)u' respectively,
so they cannot be compared directly.



Work in (U™, g)




Work in (U™, g, V)

We need a replacement, i.e. a modified natural deriva-
tive which is metric compatible, invariant, linear, Leib-
nizian:

And, more generally, for any vector field X:

VxV
In (U™, g) the replacement-solution is — in terms of stan-
dard base vector fields {e1,--- ,en} — the Levi-Civita

connection V.
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Work in (U™, g, V)

T he Christoffel symbol functions are defined by the me-
tric matrix functions as follows, with [g““} = [gij]

Observation.If g is Euclidean, i.e. [gij} is a constant
matrix function, then

I’fj(atl,xz) =0 forall (z},2°) el



Work in (U™, g, V)

With these ingredients, i.e. in (U, g, V), we then get, for
V=230 ey

VoV = Z ( +Z W) (v D)'(t) - TE (v(t)))

and for X =Y, 2/ - ¢;

VxV = Z (wi-vj-ri-{:j—FX(vk)) . e,
i jk



Work in (U™, g, V)

Observation. If g is Euclidean, then we get the well-
known ’'usual’ expressions:

d dok
VyV = Vt) = Xk: — ek

and

VxV = ZX(vk) c e
k



Work in (U™, g, V)

From here we can now define the first key operators:

grad,(f) = Z Zn:g” a_

k=1/=1
divg(V) =3 g(Ve,V,ep) - g*°
k /7
o . :
=2 gt T2 2Ty
? v )

Ag(f) = divg(grady(f))




Work in (U™, g, V)

En passant: If ¢ = g is Euclidean, then the expressions
reduce to well-known identitites:

arady, () = 3° 25 .
g — ok °k
B =1 Oxk
9 .
di V) = 't
Vg, (V) ;axz”
02 f
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Work in (U™, g, V)

T heorem 5. Geodesics, i.e. the distance realizing cur-
ves ~v in (U™, g,V), are precisely the auto-parallel unit
speed curves — they satisfy the differential equation (sy-
stem) obtained by first variation of arc-length:

va’(s) =0
Equivalently, in U™ coordinates:

2 . .
) (;827’“(8) +2 (D) - (v () - I‘fj(v(s))> ‘e, =0
i ]

k



Geodesics

The geodesic spray from a point — on the surface and
in the isometric copy (U™, g, V):




Geodesics

Flashback: The boundary rigidity setting on the surface
and in (U2, 9):
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Conductive Riemannian manifolds



Conductive Riemannian manifolds

Definition. A conductivity W on a local Riemannian
manifold (U, g,V) is a (smooth) assignment of at linear
map W to each tangent space T)U.

We assume that W is everywhere self-adjoint and posi-
tive definite with respect to the metric g:

g W(X),Y) =g (X, W(Y))

gW(X),X) > €2 g(X,X) for some non-zero constant &



Conductive Riemannian manifolds




Conductive Riemannian manifolds

In U™-coordinates:

Wiej) =Y Wi - e
k

W) =Ww (Zuj-ej> = Zuj-W(ej) = Zuj-Wf-ek
J J '



Conductive Riemannian manifolds

Physical interpretation: Any given potential function
f on (U,g) has a gradient vector field grad,(f) which
is turned into a current vector field I by W:

I =W(grad,(f))

., 0
:E Wf‘gjg'—fg'ek
Y Oz



Conductive Riemannian manifolds

Current vector fields have zero divergence. We there-
fore define the YW-modified geometric Laplacian to express
this fact for potential functions f:

Definition.
Ay (f) = divg (W(grady(/))) =0

Observation. The operator AW(f) is (still) linear
and elliptic. It opens up for generalizations of many
aspects of potential theory on Riemannian manifolds —
and on weighted Riemannian manifolds.



The mean exit time

Definition. The W-driven mean exit time function
from a compact domain 2 in a Riemannian manifold
(M™, g, V) is the unique solution to the W-modified Po-
iIsson boundary value problem:

Uloq — 0

AV(w)=-1
Quest. For which conductivities is it possible to deri-
ve curvature dependent comparison theorems for such
mean exit time functions? For isotropic conductivities
this question is related to the recently much studied
analysis of weighted manifolds.



T he Calderdon problem

Definition. The Riemannian Calderdn problem is con-
cerned with the Dirichlet problem for Ag" on a compact
domain €2 in a Riemannian manifold (M",g,V):

A (u)=0 U = I

Quest. Suppose the metric g is given. The problem
IS to reconstruct the conductivity W from knowledge
of the Dirichlet-to-Neumann map (with v = the unit
inward pointing normal vector field at the boundary):

W .



What is curvature?



Curvature

Definition. The curvature tensor R on a Riemannian
manifold (M"™, g,V) is defined via ¢g (and the induced
connection V) on 4 vector fields:

RX,Y,V,U) =g (VXVYV — VyVxV =VixyV, U) :

where [X,Y] is the Lie bracket (vector field) derivation
on functions:

[X,Y](f) = XX (f) - Y(X(f))



Curvature

Definition. The sectional curvature is a function on
the set of regular two-planes ¢ = span(X,Y) in each
tangent space TpU:

R(X,Y,Y, X))
Area2(X,Y)

where Area?(X,Y) denotes the squared area of o

K(X,Y) =

Y

Area(X,Y) = g(X, X) - g(Y,Y) — g°(X,Y)



Euler cutting for curvature of a surface




Euler cutting for curvature of a surface




Euler cutting for curvature of a surface

2,

I
K= 1
r




Curvature

T heorem 6 (Euler, Gauss, Riemann, et al.: Theore-
ma Egregium). The so-called Gauss curvature K for a
surface in 3D now has (at least) these quite different
expressions at each point:

K = m@ax(m(e)) : m@in(m(ﬁ))

— im (§) | <2wp—£(8D(p)>>

p— 0\ p3

_ R(e1,e2,e2,e1)
AreaQ(el, 62)




Curvature

The geodesic spray circle 0D(p) has length L£(0D(p))
that gives the curvature at the center point for p — 0.
The Euler normal cutting procedure at the point gives
the normal curvatures x(0) and thence the alternative
(extrinsic) max-min construction of the curvature:




Thank you for your attention!
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