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Abstract. These are lecture notes for a minicourse on geometric in-

verse problems, to be given at the virtual DTU inverse problems winter

school in January 2021.

Preface

Many fundamental inverse problems are formulated in Euclidean space.

Such problems include

• determining a function in R2 from its integrals over straight lines

(Radon transform inverse problem);

• determining the sound speed in a domain in Rn from boundary mea-

surements of solutions of the wave equation (Gel’fand problem);

• determining the electrical conductivity in a domain in Rn from volt-

age and current measurements on its boundary (Calderón problem).

In this minicourse we will study inverse problems in geometric, or non-

Euclidean, settings. For Radon transform problems this will mean that

straight lines are replaced by more general curves. For Gel’fand or Calderón

type problems this will mean that domains in Rn are replaced by more

general geometric spaces.

A particularly clean setting, which is still relevant for several applications,

is the one where domains in Rn are replaced by Riemannian manifolds and

straight lines are replaced by geodesic curves of a smooth Riemannian met-

ric. We will focus on this setting and formulate our questions on compact

Riemannian manifolds (M, g) with smooth boundary. This corresponds to

working with compactly supported functions in the Radon transform prob-

lem.

Notation. In these notes M will always be a compact, oriented, smooth

(= C∞) manifold with smooth boundary, and g will be a smooth Riemannian

metric on M . We assume that n = dim(M) ≥ 2. We write 〈 · , · 〉g and | · |g
for the g-inner product and norm on tangent vectors. In local coordinates

we write g = (gjk)
n
j,k=1, and (gjk) is the inverse matrix of (gjk). Thus if

x = (x1, . . . , xn) are local coordinates and if ∂j = ∂
∂xj

are the corresponding
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coordinate vector fields, then gjk = 〈∂j , ∂k〉g and

〈Xj∂j , Y
k∂k〉g = gjkX

jYk, |Xj∂j |g = (gjkX
jXk)1/2.

Here and below we use the Einstein summation convention that a repeated

upper and lower index is summed from 1 to n (i.e. we omit the sum signs).

We denote by ∇g = gradg and by divg the Riemannian gradient and

divergence on M . The Laplace-Beltrami operator is ∆g = divg∇g. In local

coordinates one has the formulas

∇gu = gjk∂ju∂k,

divg(X
j∂j) = det(g)−1/2∂j(det(g)1/2Xj),

∆gu = det(g)−1/2∂j(det(g)1/2gjk∂ku).

We denote the volume form on (M, g) by dVg, and the induced volume form

on ∂M by dSg. If u, v ∈ C∞(M), one has the integration by parts (or Green)

formula ∫
∂M

(∂νu)v dSg =

∫
M

((∆gu)v + 〈∇gu,∇gv〉g) dVg

where ν is the outer unit normal vector to ∂M , and ∂νu = 〈∇gu, ν〉g|∂M is

the normal derivative on ∂M .

We note that we may drop the subindices g for brevity. All geodesics are

assumed to have unit speed, i.e. to satisfy |γ̇(t)|g = 1.

1. Geodesic X-ray transform

In this section we discuss the geodesic X-ray transform, which generalizes

the classical X-ray (or Radon) transform in Euclidean space. We will prove

that the geodesic X-ray transform is injective on compact simple manifolds.

1.1. The Radon transform in R2. To set the stage, we review a few

facts about the classical Radon transform. See [He99He99, Na01Na01] for further

information.

The X-ray transform If of a function f in Rn encodes the integrals of f

over all straight lines, whereas the Radon transform Rf encodes the integrals

of f over (n − 1)-dimensional planes. We will focus on the case n = 2,

where the two transforms coincide. This transform appears naturally in

medical imaging in X-ray computed tomography (CT) and positron emission

tomography (PET).

There are many ways to parametrize the set of lines in R2. We will

parametrize lines by their direction vector ω and signed distance s from the

origin.
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Definition. If f ∈ C∞c (R2), the Radon transform of f is the function

Rf(s, ω) :=

∫ ∞
−∞

f(sω⊥ + tω) dt, s ∈ R, ω ∈ S1.

Here ω⊥ is the vector in S1 obtained by rotating ω counterclockwise by 90◦.

There is a well-known relation between Rf and the Fourier transform f̂ .

We denote by (Rf )̃ ( · , ω) the Fourier transform of Rf with respect to s.

Theorem 1.1 (Fourier slice theorem).

(Rf )̃ (σ, ω) = f̂(σω⊥).

Proof. Parametrizing R2 by y = sω⊥ + tω, we have

(Rf )̃ (σ, ω) =

∫ ∞
−∞

e−iσs
[∫ ∞
−∞

f(sω⊥ + tω) dt

]
ds =

∫
R2

e−iσy·ω
⊥
f(y) dy

= f̂(σω⊥). �

This result already proves that the Radon transform Rf uniquely deter-

mines f :

Theorem 1.2 (Uniqueness). If f ∈ C∞c (R2) is such that Rf ≡ 0, then

f ≡ 0.

Proof. If Rf ≡ 0, then f̂ ≡ 0 by Theorem 1.11.1 and consequently f ≡ 0 by

the Fourier inversion theorem. �

The interplay between the Radon and Fourier transforms can further be

used to study reconstruction algorithms and stability and range properties

for the Radon transform inverse problem. The use of the Fourier transform

is possible because the Euclidean space R2 is highly symmetric, and can be

nicely tiled with straight lines. In more general geometric spaces, symmetries

and Fourier methods may not be available so that one needs to employ

different methods.

1.2. The geodesic X-ray transform. We will now introduce the geodesic

X-ray transform following [PSU21PSU21, Chapters 3 and 4], see also [Sh94Sh94]. This

transform appears in seismic and ultrasound imaging, e.g. as the lineariza-

tion of the boundary rigidity/inverse kinematic problem. We will see in the

later sections that it also arises in the study of inverse problems for partial

differential equations.

Let (M, g) be a compact manifold with smooth boundary, assumed to be

embedded in a compact manifold (N, g) without boundary. We parametrize

geodesics by points in the unit sphere bundle, defined by

SM := {(x, v) ; x ∈M, v ∈ TxM, |v|g = 1}.
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We also consider the unit spheres

SxM := {v ∈ TxM ; |v|g = 1}, x ∈M.

If (x, v) ∈ SN we denote by γx,v(t) the geodesic in N which starts at the

point x in direction v, that is,

Dγ̇ γ̇ = 0, γx,v(0) = x, γ̇x,v(0) = v.

Recall that the geodesic equation Dγ̇ γ̇ = 0 reads in local coordinates as

γ̈l(t) + Γljk(γ(t))γ̇j(t)γ̇k(t) = 0

where Γljk = 1
2g
lm(∂jgkm+∂kgjm−∂mgjk) are the Christoffel symbols of the

metric g = (gjk)
n
j,k=1, and (gjk) is the inverse matrix of (gjk).

We also denote by ϕt the geodesic flow on SN ,

ϕt : SN → SN, ϕt(x, v) = (γx,v(t), γ̇x,v(t)).

If (x, v) ∈ SM let τ(x, v) ∈ [0,∞] be the first time when γx,v(t) exits M ,

τ(x, v) := sup {t ≥ 0 ; γx,v([0, t]) ⊂M}.

We assume that (M, g) is nontrapping, meaning that τ(x, v) is finite for any

(x, v) ∈ SM . (If τ(x, v) =∞, we say that the geodesic γx,v is trapped.)

Definition. The geodesic X-ray transform of a function f ∈ C∞(M) is

defined by

If(x, v) :=

∫ τ(x,v)

0
f(γx,v(t)) dt, (x, v) ∈ ∂(SM).

Thus, If encodes the integrals of f over all maximal geodesics in M

starting from ∂M , such geodesics being parametrized by points of ∂(SM) =

{(x, v) ∈ SM ; x ∈ ∂M}.
So far we have not imposed any restrictions on the behavior of geodesics

in (M, g) other than the nontrapping condition. However, invertibility of the

geodesic X-ray transform is only known under certain geometric restrictions.

One class of manifolds where such results have been proved is the following.

Definition. A compact Riemannian manifold (M, g) with smooth boundary

is called simple if

(a) its boundary ∂M is strictly convex,

(b) it is nontrapping, and

(c) no geodesic has conjugate points.

We explain briefly the notions appearing in the definition:
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1. (Strict convexity) We say that ∂M is strictly convex if the second fun-

damental form of ∂M in M is positive definite. This implies that any

geodesic in N that is tangent to ∂M stays outside M for small positive

and negative times. Thus any maximal geodesic going from ∂M into M

stays inside M except for its endpoints, which corresponds to the usual

notion of strict convexity in Euclidean space.

We will only use the following consequence of (a): if ∂M is strictly

convex, then the exit time function τ is C∞ in SM int and hence all func-

tions in the analysis below are C∞, see [PSU21PSU21, Section 3.2]. In fact

assumption (a) could be removed with extra arguments [GMT17GMT17].

2. (Nontrapping) The nontrapping condition means that any geodesic in M

should reach the boundary ∂M in finite time. An example of a trapped

geodesic is the equator in a large spherical cap {x ∈ S2 ; x3 ≥ −ε}.

3. (Conjugate points) If γ : [a, b] → M is a geodesic segment and if there

is a family of geodesics (γs)s∈(−ε,ε) such that γ0 = γ and γs(a) = γ(a),

γs(b) = γ(b) for s ∈ (−ε, ε), then the points γ(a) and γ(b) are said to

be conjugate along γ. This is a sufficient and almost necessary condition

for conjugate points; for precise definitions see [PSU21PSU21, Section 3.7]. As

an example, the north and south poles on the sphere are conjugate along

any geodesic (=great circle) connecting them.

Part (c) of the definition of a simple manifold states that there is no

pair of conjugate points along any geodesic segment in M . Informally

this means that there is no family of geodesics that starts at one point

and converges to another point after some time. When dim(M) = 2, a

sufficient condition for no conjugate points is that the Gaussian curvature

satisfies K(x) ≤ 0 for all x ∈ M (in higher dimensions it is enough that

all sectional curvatures are nonpositive).

The class of simple manifolds turns out frequently in geometric inverse

problems. There are several equivalent definitions [PSU21PSU21, Section 3.8] and

we will use one of them later in these notes. We mention that any simple

manifold is diffeomorphic to a ball, so one can think of M as being just the

closed unit ball in Rn with some nontrivial Riemannian metric g.

Example 1.3 (Simple manifolds). Strictly convex bounded smooth domains

in Rn, or in nonpositively curved Riemannian manifolds, are simple. An

example with positive curvature is given by the spherical cap M = {x ∈
S2 ; x3 ≥ ε}, where S2 is the unit sphere in R3 and ε > 0. Note that such a

spherical cap does not contain trapped geodesics or conjugate points. Small

metric perturbations of simple manifolds are also simple.
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The main result of this section, proved first in [Mu77Mu77] in two dimensions,

states that the geodesic X-ray transform is injective on simple manifolds.

Theorem 1.4 (Injectivity). Let (M, g) be a simple manifold. If f ∈ C∞(M)

satisfies If = 0, then f = 0.

We note that on general manifolds injectivity may fail:

Example 1.5 (Counterexamples). There are two basic examples of mani-

folds where the geodesic X-ray transform is not injective. The first is a large

spherical cap M = {x ∈ S2 ; x3 ≥ −ε}. Any odd function f supported in

a small neighborhood of e1 and −e1 integrates to zero over all great circles,

hence If = 0 but f is nontrivial. Another example is a catenoid type surface

with a flat cylinder glued in the middle. Note that both examples contain

trapped geodesics. The latter example has no conjugate points.

Theorem 1.41.4 is still in a sense the best available result on the geodesic

X-ray transform on two-dimensional manifolds. When dim(M) ≥ 3 further

results are available, based on the microlocal method introduced in [UV16UV16].

These results are valid on strictly convex nontrapping manifolds that admit

a strictly convex function, i.e. a function ϕ ∈ C∞(M) such that Hessg(ϕ) >

0, or more generally are foliated by strictly convex hypersurfaces. Such

manifolds may have conjugate points. We also mention that the nontrapping

condition can be weakened slightly [Gu17Gu17].

The following questions remain open (see the survey [IM19IM19] for further

references):

Question 1.1. Is the geodesic X-ray transform injective on compact strictly

convex nontrapping manifolds?

Question 1.2. Does every simple manifold admit a strictly convex function?

Question 1.3. Are there other examples of manifolds where the geodesic

X-ray transform is not injective?

In the rest of this section we will sketch a proof of Theorem 1.41.4 following

the argument in [PSU13PSU13] under two simplifying assumptions:

• dim(M) = 2 (to simplify the analysis on SM);

• f ∈ C∞c (M int) (to remove regularity issues near ∂M).

The proof contains two parts:

1. Reduction from the integral equation If = 0 into a partial differen-

tial equation V Xu = 0 on SM .

2. Uniqueness result for the equation V Xu = 0 in SM based on energy

methods.
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1.3. Reduction to PDE. Assume that f ∈ C∞c (M int) satisfies If = 0.

We begin by introducing the primitive

u(x, v) = uf (x, v) :=

∫ τ(x,v)

0
f(ϕt(x, v)) dt, (x, v) ∈ SM.

Here we think of f as a function on SM by taking f(x, v) = f(x). Note that

u|∂(SM) = If = 0. Since τ is smooth in SM int and f vanishes near ∂M , we

in fact have u ∈ C∞c (SM int).

Next we introduce the geodesic vector field X : C∞(SN) → C∞(SN),

which differentiates a function on SN along geodesic flow:

Xw(x, v) =
d

ds
w(ϕs(x, v))

∣∣∣
s=0

.

We note that the function u = uf above satisfies

Xu(x, v) =
d

ds
u(ϕs(x, v))

∣∣∣
s=0

=
d

ds

∫ τ(ϕs(x,v))

0
f(ϕt(ϕs(x, v))) dt

∣∣∣
s=0

=
d

ds

∫ τ(x,v)−s

0
f(ϕt+s(x, v)) dt

∣∣∣
s=0

=
d

ds

∫ τ(x,v)

s
f(ϕr(x, v)) dr

∣∣∣
s=0

= −f(x).

In particular we have

(1.1) Xu = −f(x) on SM, u|∂SM = If = 0.

The problem (1.11.1) can be considered as an inverse source problem for a

transport equation: the source f(x) in the equation produces a measurement

u|∂(SM) = If = 0. We wish to prove uniqueness in the sense that if the

measurement u|∂(SM) is zero, then the source must be zero.

Note that the equation is on SM = {(x, v) ∈ TM ; |v| = 1}, but the

source f(x) only depends on x and not on v. We can further get rid of the

source by differentiating the equation Xu(x, v) = −f(x) with respect to v.

To do this in a coordinate-invariant way, we introduce the following notions:

Definition. Let (M, g) be an oriented two-dimensional manifold. Given

v ∈ SxM , we define v⊥ (rotation by 90◦ counterclockwise) to be the unique

vector in SxM so that (v, v⊥) is a positively oriented orthonormal basis of

TxM . Morever, given θ ∈ (−π, π], we define the rotation

Rθv = (cos θ)v + (sin θ)v⊥.

Finally, we define the vertical vector field V : C∞(SM)→ C∞(SM) by

V w(x, v) =
d

dθ
w(Rθ(x, v))

∣∣∣
θ=0

, (x, v) ∈ SM.
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Example 1.6 (X and V in the Euclidean disk). Let M = D ⊂ R2 and let

g be the Euclidean metric. Then

SM = {(x, vθ) ; x ∈M, θ ∈ (−π, π]}

where vθ = (cos θ, sin θ). We identify (x, vθ) with (x, θ). Then

Xw(x, θ) =
d

dt
w(x+ tvθ, θ)

∣∣∣
t=0

= vθ · ∇xw(x, θ)

and

V w(x, θ) =
d

dθ
w(x, θ).

If f(x) is independent of v, clearly V f = 0. Thus if f ∈ C∞c (M int)

satisfies If = 0, then by (1.11.1) the primitive u = uf ∈ C∞c (SM int) satisfies

V Xu = 0 in SM.

This reduces the geodesic X-ray transform problem to showing that the only

solution of the equation V Xu = 0 on SM which vanishes near ∂M is the

zero solution.

1.4. Uniqueness via energy methods. The required uniqueness result

will be a consequence of the following energy estimate.

Proposition 1.7 (Energy estimate). If (M, g) is a two-dimensional simple

manifold, then

‖Xu‖L2(SM) ≤ ‖V Xu‖L2(SM)

for any u ∈ C∞c (SM int).

The L2 norm above is interpreted as follows. Recall that on any Rie-

mannian manifold (M, g) there is a volume form dVg. Moreover, if x ∈ M
the metric g induces an inner product (i.e. metric) g(x) on TxM , and hence

a metric and volume form dSx on the unit sphere SxM . We then have the

L2(SM) inner product

(u,w) =

∫
SM

uw̄ dΣ :=

∫
M

∫
SxM

u(x, v)w(x, v) dSx(v) dVg(x)

and the corresponding norm

‖u‖ = ‖u‖L2(SM) =

(∫
SM
|u|2 dΣ

)1/2

.

The proof of the main theorem, when dim(M) = 2 and f ∈ C∞c (M int),

follows easily from Proposition 1.71.7.

Proof of Theorem 1.41.4. Let f ∈ C∞c (M int) satisfy If = 0. We have seen

that the primitive u = uf is in C∞c (SM int) and satisfies V Xu = 0 in SM .

Proposition 1.71.7 gives that Xu = 0 in SM . By (1.11.1) we get f = −Xu =

0. �
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It remains to prove Proposition 1.71.7. Write

P := V X.

The equation Pu = 0 in SM is a second order PDE on the three-dimensional

manifold SM . It does not belong to any of the standard classes (elliptic,

parabolic, hyperbolic etc). Nevertheless we can prove an energy estimate

for it by using a positive commutator argument.

We first need to compute the formal adjoint of P in the L2(SM) inner

product. We start with the adjoints of X and V .

Lemma 1.8 (Adjoints of X and V ). The vector fields X and V are formally

skew-adjoint operators in the sense that

(Xu,w) = −(u,Xw), (V u,w) = −(u, V w)

for u,w ∈ C∞c (SM int).

Assuming this, the formal adjoint of P is P ∗ = (V X)∗ = XV . Thus we

may decompose P in terms of its self-adjoint and skew-adjoint parts:

(1.2) P = A+ iB, A =
P + P ∗

2
, B =

P − P ∗

2i
.

(Compare with the decomposition z = a + ib of a complex number into its

real and imaginary parts.) Since A∗ = A and B∗ = B, we can now study

the norm ‖V Xu‖ = ‖Pu‖ for u ∈ C∞c (SM int) as follows:

‖Pu‖2 = (Pu, Pu) = ((A+ iB)u, (A+ iB)u)

= ‖Au‖2 + ‖Bu‖2 + i(Bu,Au)− i(Au,Bu)

= ‖Au‖2 + ‖Bu‖2 + (i[A,B]u, u)(1.3)

where [A,B] := AB −BA is the commutator of A and B.

In Proposition 1.71.7 we need to prove that ‖Pu‖ ≥ ‖Xu‖. We can obtain

a lower bound for ‖Pu‖ from (1.31.3) if the commutator term (i[A,B]u, u) is

positive (or if it can be absorbed in the positive terms ‖Au‖2 and ‖Bu‖2).

The commutator has the form

2i[A,B] =
1

2
[P + P ∗, P − P ∗] = [P ∗, P ] = P ∗P − PP ∗

= XV V X − V XXV.

To study this we need to commute X and V . Define the vector field

X⊥ := [X,V ].
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Lemma 1.9 (Commutator formulas). If (M, g) is two-dimensional, one has

[X,V ] = X⊥,

[V,X⊥] = X,

[X,X⊥] = −KV

where K is the Gaussian curvature of (M, g).

Example 1.10 (Euclidean case). Let M = D ⊂ R2 and let g be the Eu-

clidean metric. As in Example 1.61.6 we may identify (x, vθ) with (x, θ). Then

X⊥ has the form

X⊥w = XV w − V Xw = vθ · ∇x(∂θw)− ∂θ(vθ · ∇xw)

= −(∂θvθ) · ∇xw = −v⊥θ · ∇xw.

The formulas in Lemma 1.91.9 can be checked by direct computations, e.g.

[X,X⊥]w = XX⊥w −X⊥Xw = vθ · ∇x(−v⊥θ · ∇xw) + v⊥θ · ∇x(vθ · ∇xw)

= 0.

This is consistent since K = 0 for the Euclidean metric. In general comput-

ing [X,X⊥] requires commuting two covariant derivatives, and hence one

expects the curvature to appear.

We will indicate how to prove Lemmas 1.81.8 and 1.91.9 in the end of this

section. Using Lemma 1.91.9, we can easily compute the commutator i[A,B]:

2i[A,B] = XV V X − V XXV
= V XV X +X⊥V X − V XV X − V XX⊥
= V X⊥X −XX − V XX⊥
= V KV −XX.

Thus by Lemma 1.81.8

(1.4) (2i[A,B]u, u) = ‖Xu‖2 − (KV u, V u).

We observe:

• If g is the Euclidean metric, thenK ≡ 0 and (i[A,B]u, u) = ‖Xu‖2 ≥
0.

• More generally if (M, g) has nonpositive curvature, i.e. K ≤ 0, then

(i[A,B]u, u) ≥ ‖Xu‖2 ≥ 0.

Going back to (1.31.3) and using that ‖Au‖2 +‖Bu‖2 ≥ 0, we see that if (M, g)

is a two-dimensional simple manifold which additionally has nonpositive

curvature, then

‖V Xu‖2 ≥ ‖Xu‖2, u ∈ C∞c (SM int).
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This proves Proposition 1.71.7 in the (already nontrivial and interesting) case

where K ≤ 0.

To prove Proposition 1.71.7 in general we need to exploit the ‖Au‖2 and

‖Bu‖2 terms more carefully. Using (1.21.2) it is easy to check that

‖Au‖2 + ‖Bu‖2 =
1

4
‖(P + P ∗)u‖2 +

1

4
‖(P − P ∗)u‖2

=
1

2
‖Pu‖2 +

1

2
‖P ∗u‖2.

Inserting this back in (1.31.3) gives

‖Pu‖2 = ‖P ∗u‖2 + 2(i[A,B]u, u).

Since P = V X and P ∗ = XV , using (1.41.4) yields the identity

‖V Xu‖2 = ‖XV u‖2 − (KV u, V u) + ‖Xu‖2.

This is an important energy identity in the study of X-ray transforms, known

as the Pestov identity. The proof of Proposition 1.71.7 is completed by the

following lemma, which explicitly uses the no conjugate points assumption.

Lemma 1.11. If (M, g) is a two-dimensional simple manifold, then

‖XV u‖2 − (KV u, V u) ≥ 0, u ∈ C∞c (SM int).

Proof. If γ : [0, τ ]→M is a geodesic segment, we recall the index form (see

[PSU21PSU21, Section 3.7])

Iγ(Y, Y ) =

∫ τ

0
(|DtY (t)|2g −K(γ(t))|Y (t)|2g) dt

defined for vector fields Y along γ that are normal to γ̇. This is the bilinear

form associated with the Jacobi equation −D2
t J(t)−K(γ(t))J(t) = 0. The

basic property is that γ has no conjugate points iff Iγ(Y, Y ) > 0 for all

normal vector fields Y 6≡ 0 along γ that vanish at the endpoints.

We will also need the Santaló formula (see [PSU21PSU21, Section 3.5]), which

is a change of variables formula on SM and states that∫
SM

w dΣ =

∫
∂+SM

[∫ τ(x,v)

0
w(ϕt(x, v)) dt

]
µd(∂SM)

where ∂+SM = {(x, v) ∈ ∂(SM) ; 〈v, ν〉g ≤ 0} and µ = −〈v, ν〉g, with ν

being the outward unit normal to ∂M . Applying this to w = |XV u|2 −
K|V u|2, and using for any (x, v) ∈ ∂+SM the normal vector field

Yx,v(t) := V u(ϕt(x, v))γ̇(t)⊥
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along γx,v, implies that

‖XV u‖2 − (KV u, V u)

=

∫
∂+SM

[∫ τ(x,v)

0
(|XV u(ϕt(x, v))|2 −K(γx,v(t))|V u(ϕt(x, v))|2) dt

]
µd(∂SM)

=

∫
∂+SM

[∫ τ(x,v)

0
(|DtYx,v(t)|2 −K(γx,v(t))|Yx,v(t)|2) dt

]
µd(∂SM)

=

∫
∂+SM

Iγx,v(Yx,v, Yx,v)µd(∂SM).

The last quantity is ≥ 0, since the index form is nonnegative by the no

conjugate points condition. �

Remark 1.12. If (M, g) is simple and n = dim(M) ≥ 3, the same scheme

as above can be used to prove that the geodesic X-ray transform is injective.

However, the vector fields V and X⊥ need to be replaced by suitable vertical

and horizontal gradient operators
v

∇ and
h

∇, and the Pestov identity takes

the form

‖
v

∇Xu‖2 = ‖X
v

∇u‖2 − (R
v

∇u,
v

∇u) + (n− 1)‖Xu‖2

where RZ(x, v) := Rx(Z, v)v is the Riemann curvature tensor. See [PSU15PSU15]

for details.

Finally we discuss the proof of Lemmas 1.81.8 and 1.91.9. One way to prove

them is via local coordinate computations. There is a particularly useful

coordinate system for this, known as isothermal coordinates. The existence

of global isothermal coordinates is part of the uniformization theorem for

Riemann surfaces. It boils down to the following generalization of the Rie-

mann mapping theorem from simply connected planar domains to simply

connected Riemann surfaces. Here we use the basic fact that any sim-

ple manifold is simply connected, which follows by Morse theory [PSU21PSU21,

Proposition 3.7.19].

Theorem 1.13 (Global isothermal coordinates). Let (M, g) be a compact

oriented simply connected two-dimensional manifold with smooth boundary.

There are global coordinates x = (x1, x2) on M so that in these coordinates

the metric has the form

gjk(x) = e2λ(x)δjk

for some real λ ∈ C∞(M).
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The isothermal coordinates induce global coordinates (x1, x2, θ) on SM

where θ ∈ (−π, π] is the angle between v and ∂/∂x1, i.e.

v = e−λ(x)(cos θ
∂

∂x1
+ sin θ

∂

∂x2
).

Exercise 1.1. Let (M, g) be a compact oriented simply connected two-

dimensional manifold with smooth boundary. Use the (x1, x2) and (x1, x2, θ)

coordinates above to do the following (see [PSU21PSU21, Section 3.5] for hints if

needed):

(a) Compute the Christoffel symbols Γljk(x).

(b) Show that X, X⊥ and V are given by

X = e−λ
(

cos θ
∂

∂x1
+ sin θ

∂

∂x2
+

(
− ∂λ

∂x1
sin θ +

∂λ

∂x2
cos θ

)
∂

∂θ

)
,

X⊥ = −e−λ
(
− sin θ

∂

∂x1
+ cos θ

∂

∂x2
−
(
∂λ

∂x1
cos θ +

∂λ

∂x2
sin θ

)
∂

∂θ

)
,

V =
∂

∂θ
.

Hint. To compute X, you can use the equation tan θ(t) = ẋ2(t)
ẋ1(t) where

(x1(t), x2(t), θ(t)) is a geodesic in the (x1, x2, θ) coordinates.

(c) Prove Lemma 1.81.8. You can use (b) and the fact that∫
SM

w dΣ =

∫
M

∫ π

−π
w(x, θ)e2λ(x) dθ dx.

(d) Prove Lemma 1.91.9. You can use (b) and the fact that if gjk(x) =

e2λ(x)δjk, then the Gaussian curvature has the form

K = −∆gλ = −e−2λ(∂2
1λ+ ∂2

2λ).

2. Gel’fand problem

Seismic imaging gives rise to various inverse problems related to deter-

mining interior properties, e.g. oil deposits or deep structure, of the Earth.

Often this is done by using acoustic or elastic waves. We will consider

the following problem, which has many names and equivalent forms. It is

also known as the inverse boundary spectral problem (see the monograph

[KKL01KKL01]):

Gel’fand problem: Is it possible to determine the interior

structure of Earth by controlling acoustic waves and measur-

ing vibrations at the surface?

In seismic imaging one often tries to recover an unknown sound speed.

However, in this presentation we consider the simpler case where the sound

speed is known and one attempts to recover an unknown potential q. We
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assume that the Earth is modelled by a compact Riemannian n-manifold

(M, g) with smooth boundary (in practice M is a closed ball in R3), and the

metric g models the sound speed. In fact, if c(x) is a scalar sound speed in

a domain in Rn, the corresponding metric is

gjk(x) = c(x)−2δjk.

A general metric g corresponds to an anisotropic (non-scalar) sound speed.

Thus Riemannian geometry already appears when considering sound speeds

in Euclidean domains.

Consider the free wave operator

2 := ∂2
t −∆

in M × (0, T ), where ∆ is the Laplace-Beltrami operator in (M, g):

∆u = div(∇u) = det(g)−1/2∂j(det(g)1/2gjk∂ku).

Here the operators ∇ = ∇g, div = divg, and ∆ = ∆g only act in the x

variable. Let also q ∈ C∞c (M int) be a time-independent potential.

We assume that the medium is at rest at time t = 0 and that we take

measurements until time T > 0. If we prescribe the amplitude of the wave

to be f(x, t) on ∂M × (0, T ), this leads to a solution u of the wave equation

(2.1)


(2 + q)u = 0 in M × (0, T ),

u = f on ∂M × (0, T ),

u = ∂tu = 0 on {t = 0}.

Given any f ∈ C∞c (∂M × (0, T )), there is a unique solution u ∈ C∞(M ×
(0, T )) (see [Ev10Ev10, Theorem 7 in §7.2.3] for the Euclidean case; the proof

in the Riemannian case is the same). We assume that we can measure

the normal derivative ∂νu|∂M×(0,T ), where ∂νu(x, t) = 〈∇u(x, t), ν(x)〉 and

ν is the outer unit normal to ∂M . We do such measurements for many

different functions f . The ideal boundary measurements are encoded by the

hyperbolic Dirichlet-to-Neumann map (DN map for short)

Λq : C∞c (∂M × (0, T ))→ C∞(∂M × (0, T )), Λq(f) = ∂νu|∂M×(0,T ).

The Gel’fand problem for this model amounts to recovering q from the

knowledge of the map Λq. We will prove the following classical result. For

simplicity we assume that the potentials are compactly supported in M int.

Theorem 2.1 (Uniqueness). Assume that (M, g) is simple. Let T > 0 be

sufficiently large and assume that q1, q2 ∈ C∞c (M int). If

Λq1 = Λq2 ,

then q1 = q2 in M .
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Remark 2.2. It is natural that one needs T to be sufficiently large in

Theorem 2.12.1. By finite propagation speed the map Λq is unaffected if one

changes q outside the set {x ∈M ; dist(x, ∂M) < T/2}.11 For our proof it is

enough that T is larger than the length of the longest maximal geodesic in

M .

If in Theorem 2.12.1 one drops the assumption that (M, g) is simple, it is

still possible to prove that

(2.2)

∫ `

0
q1(γ(t)) dt =

∫ `

0
q2(γ(t)) dt

whenever γ : [0, `] → M is a non-trapped maximal geodesic in M with

` < T . We will prove (2.22.2) in the case where (M, g) is simple. It then

follows from the injectivity of the geodesic X-ray transform, i.e. Theorem

1.41.4, that q1 = q2.

Theorem 2.12.1 is in fact true for a general compact manifold (M, g) under

the sharp condition T > 2 supx∈M dist(x, ∂M). This and many other results

for time-independent coefficients follow from the Boundary Control method

introduced in [Be87Be87], see [KKL01KKL01, La18La18] for further developments. However,

there are several open questions when q = q(x, t) is time-dependent. This

case arises in inverse problems for nonlinear equations or in general relativity.

In that case (and if one considers the analogous problem on ∂M ×R instead

of ∂M×(0, T ), see Exercise 2.12.1), instead of (2.22.2), our method which is based

on geometric optics solutions gives that

(2.3)

∫ `

0
q1(γ(t), t+ σ) dt =

∫ `

0
q2(γ(t), t+ σ) dt

whenever γ is a maximal geodesic as above and σ ∈ R is a time-delay

parameter. This means that the light ray transforms of q1 and q2 are the

same. The curves (γ(t), t+σ) where γ is a geodesic in M are called light rays;

they are lightlike, or null, geodesics for the Lorentzian metric −dt2 + g(x).

When (M, g) is simple the invertibility of the light ray transform follows

from invertibility of the geodesic X-ray transform, see Exercise 2.12.1.

More generally, instead of the wave operator 2 = ∂2
t −∆ corresponding

to the product Lorentzian metric −dt2 +g(x) in M×R, one could consider a

more general Lorentzian metric ḡ (i.e. a symmetric 2-tensor field on M ×R
that has one negative and n positive eigenvalues at each point) and the

1If u and ũ solve (2.12.1) for potentials q and q̃ with the same Dirichlet data f , and if

q = q̃ in U := {x ∈ M ; dist(x, ∂M) < T/2}, then w := u− ũ solves (2 + q)w = F where

F := −(q− q̃)ũ vanishes in U and also in {(x, t) ; dist(x, ∂M) > t} since ũ vanishes there.

Moreover, w = ∂tw = 0 on {t = 0} and w|∂M×(0,T ) = 0. By finite speed of propagation

∂νw|∂M×(0,T ) = 0. This proves that Λq = Λq̃.
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corresponding wave operator 2ḡ. Inverse problems for 2ḡ constitute a wave

equation analogue of the anisotropic Calderón problem (see Section 33).

The following questions remain open:

Question 2.1. Can one recover a time-dependent potential q ∈ C∞c (M×R)

from the hyperbolic DN map on ∂M ×R for a general compact Riemannian

manifold (M, g) with boundary?

Question 2.2. For which Lorentzian metrics ḡ is the light ray transform

invertible?

Question 2.3. For which Lorentzian metrics ḡ does one have uniqueness

in the Gel’fand problem?

See [AFO20AFO20, FIKO19FIKO19, FIO19FIO19, St17St17] for recent results on the above ques-

tions. We also mention that for nonlinear wave equations better results are

available, see e.g. [La18La18].

We now start the proof of Theorem 2.12.1. Alternative presentations may

be found in the lecture notes [Ok18Ok18, Sa20Sa20] (the latter only in the Euclidean

case), and similar results in much more general settings appear in [SY18SY18,

OSSU20OSSU20]. The proof proceeds in four steps.

1. Derivation of an integral identity showing that if Λq1 = Λq2 , then

q1 − q2 is L2-orthogonal to certain products of solutions.

2. Construction of special solutions that concentrate near a light ray

(γ(t), t+ σ) for some σ > 0.

3. Proof of (2.22.2) by inserting the special solutions in the integral iden-

tity and taking a limit.

4. Inversion of the geodesic X-ray transform to prove that q1 = q2.

The first step is an integral identity.

Lemma 2.3 (Integral identity). Assume that q1, q2 ∈ C∞(M). For any

f1, f2 ∈ C∞c (∂M × (0, T )), one has

((Λq1 − Λq2)f1, f2)L2(∂M×(0,T )) =

∫
M

∫ T

0
(q1 − q2)u1ū2 dt dV

where u1 solves (2.12.1) with q = q1 and f = f1, and u2 solves an analogous

problem with vanishing Cauchy data on {t = T}:

(2.4)


(2 + q2)u2 = 0 in M × (0, T ),

u2 = f2 on ∂M × (0, T ),

u2 = ∂tu2 = 0 on {t = T}.

Proof. We first compute the formal adjoint of the DN map: one has

(Λqf, h)L2(∂M×(0,T )) = (f,ΛTq h)L2(∂M×(0,T ))
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where ΛTq h = ∂νv|∂M×(0,T ) with v solving (2+q)v = 0 so that v|∂M×(0,T ) = h

and v = ∂tv = 0 on {t = T}. To prove this, we let u be the solution of (2.12.1)

and integrate by parts:

(Λqf, h)L2(∂M×(0,T )) =

∫
∂M

∫ T

0
(∂νu)v̄ dt dS

=

∫
M

∫ T

0
(〈∇u,∇v̄〉+ (∆u)v̄) dt dV

=

∫
M

∫ T

0
(〈∇u,∇v̄〉+ (∂2

t u+ qu)v̄) dt dV

=

∫
M

∫ T

0
(〈∇u,∇v̄〉 − ∂tu∂tv̄ + quv̄) dt dV

=

∫
M

∫ T

0
(〈∇u,∇v̄〉+ u(∂2

t v + qv)) dt dV

=

∫
M

∫ T

0
(〈∇u,∇v̄〉+ u∆v) dt dV

=

∫
∂M

∫ T

0
u∂ν v̄ dt dS

= (f,ΛTq h)L2(∂M×(0,T )).

Now, if u1 and u2 are as stated, the computation above gives

(Λq1f1, f2)L2(∂M×(0,T )) =

∫
M

∫ T

0
(〈∇u1,∇ū2〉 − ∂tu1∂tū2 + q1u1ū2) dt dV

and

(Λq2f1, f2)L2(∂M×(0,T )) = (f1,Λ
T
q2f2)L2(∂M×(0,T ))

=

∫
Ω

∫ T

0
(〈∇u1,∇ū2〉 − ∂tu1∂tū2 + q2u1ū2) dt dV.

The result follows by subtracting these two identities. �

If Λq1 = Λq2 , it follows from Lemma 2.32.3 that∫
M

∫ T

0
(q1 − q2)u1ū2 dt dV = 0

for all solutions u1 and u2 of the given type.

We will now start the construction of special solutions concentrating near

a light ray (γ(t), t + σ) where σ > 0 is a small time delay parameter. We

use the method of geometrical optics, also known as the WKB method, and

first look for approximate solutions using the ansatz

v(x, t) = eiλϕ(x,t)a(x, t)
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where λ > 0 is a large parameter, ϕ is a real phase function, and a is an

amplitude supported near the curve t 7→ (γ(t), t+σ). A direct computation,

given below, shows that

(2 + q)v = eiλϕ
[
λ2
[
|∇xϕ|2g − (∂tϕ)2

]
a+ iλLa+ (2 + q)a

]
where L is a certain first order differential operator. Now v is a good ap-

proximate solution if the right hand side is very small when λ is large. In

particular, we want the λ2 term to vanish, which means that the phase

function ϕ should solve the eikonal equation

|∇xϕ|2g − (∂tϕ)2 = 0.

We will show that when (M, g) is simple, the function ϕ(x, t) := t − r is

a solution where (ω, r) are Riemannian polar coordinates as in Lemma 2.72.7.

We also show that by solving transport equations involving L one can obtain

an amplitude a supported near the curve t 7→ (γ(t), t+ σ) satisfying

‖iλLa+ (2 + q)a‖L∞ → 0 as λ→∞.

Thus v is an approximate solution in the sense that (2 + q)v = o(1) as

λ → ∞. These approximate solutions can then be converted into exact

solutions by solving a Dirichlet problem for the wave equation.

After the outline above, we give the precise statement regarding concen-

trating solutions.

Proposition 2.4 (Concentrating solutions). Assume that q ∈ C∞c (M int),

and let γ : [0, `] → M be a maximal geodesic in M with ` < T . Let also

σ > 0 be a small enough time delay parameter. For any λ ≥ 1 there is a

solution u = uλ of (2+ q)u = 0 in M × (0, T ) with u = ∂tu = 0 on {t = 0},
such that for any ψ ∈ C∞c (M × [0, T ]) one has

(2.5) lim
λ→∞

∫
M

∫ T

0
ψ|u|2 dt dV =

∫ `

0
ψ(γ(t), t+ σ) dt.

Moreover, if q̃ ∈ C∞c (M int), there is a solution ũ = ũλ of (2 + q̃)ũ = 0 in

M × (0, T ) with ũ = ∂tũ = 0 on {t = T}, such that for any ψ ∈ C∞c (M ×
[0, T ]) one has

(2.6) lim
λ→∞

∫
M

∫ T

0
ψuũ dt dV =

∫ `

0
ψ(γ(t), t+ σ) dt.

Remark 2.5. The fact that one can construct solutions to the wave equa-

tion that concentrate near light rays t 7→ (γ(t), t + σ) is a consequence of

propagation of singularities. This general phenomenon states that singulari-

ties of solutions for operators with real valued principal symbol p propagate

along null bicharacteristic curves, i.e. integral curves of the Hamilton vec-

tor field Hp, in phase space. The principal symbol of the wave operator 2
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is p(x, t, ξ, τ) = −τ2 + |ξ|2g, and the light rays are projections to the (x, t)

variables of null bicharacteristic curves for 2.

At this point it is easy to prove the main result:

Proof of Theorem 2.12.1. Using the assumption Λq1 = Λq2 and Lemma 2.32.3, we

have

(2.7)

∫
M

∫ T

0
(q1 − q2)u1u2 dt dV = 0

for any solutions uj of (2 + qj)uj = 0 in M × (0, T ) so that u1 = ∂tu1 = 0

on {t = 0}, and u2 = ∂tu2 = 0 on {t = T}.
Let γ : [0, `] → M be a maximal unit speed geodesic segment in M with

` < T , let σ > 0 be small, and let u1 = u1,λ be the solution constructed

in Proposition 2.42.4 for the potential q1 with u1 = ∂tu1 = 0 on {t = 0}.
Moreover, let u2 = u2,λ be the solution constructed in the end of Proposition

2.42.4 for the potential q2 with u2 = ∂tu2 = 0 on {t = T}. Taking the limit as

λ→∞ in (2.72.7) and using (2.62.6) with ψ(x, t) = (q1 − q2)(x), we obtain that∫ τ

0
(q1 − q2)(γ(t)) dt = 0.

This is true for any maximal geodesic γ in M with length ` < T . If we

assume that T is larger than the length of the longest maximal geodesic

in M , it follows that the geodesic X-ray transform of q1 − q2 vanishes. By

Theorem 1.41.4 we obtain that q1 = q2. �

We will now begin the proof of Proposition 2.42.4. For the construction of

the phase function we will use the following fact about simple manifolds. It

essentially states that a manifold is simple iff it admits global polar coordi-

nates centered at any point.

Lemma 2.6 (Exponential map on simple manifolds). Let (M, g) be compact

with strictly convex smooth boundary. Then (M, g) is simple iff there is an

open manifold (U, g) containing M as a compact subdomain such that for

any p ∈M , the exponential map expp is a diffeomorphism from its maximal

domain Dp in TpU onto U .

The proof that any simple manifold satisfies the condition in Lemma 2.62.6

requires geometric arguments and may be found in [PSU21PSU21, Section 3.8].

For the purposes of this section, we can just take the condition in Lemma

2.62.6 to be the definition of a simple manifold. It follows that any x ∈ U can

be uniquely written as

x = expp(rω)
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for some r ≥ 0 and ω ∈ Sn−1, with rω ∈ Dp. Thus we may identify x ∈ U
with (ω, r). The coordinates (ω, r) are called Riemannian polar coordinates,

or polar normal coordinates, in (U, g). We will need the following property.

Lemma 2.7 (Riemannian polar coordinates). In the (ω, r) coordinates the

metric has the form

g(ω, r) =

(
1 0

0 g0(ω, r)

)
.

Proof. It is enough to prove that 〈∂r, ∂r〉 = 1 and 〈∂r, w〉 = 0, where w =

η̇(0) for any curve η(t) = (r, ω(t)). Since ∂r is the tangent vector of a unit

speed geodesic starting at p, one has 〈∂r, ∂r〉 = 1. If η(t) is a curve as above,

the fact that 〈∂r, w〉 = 0 is precisely the content of the Gauss lemma in

Riemannian geometry (see e.g. [PSU21PSU21, Section 3.7]). �

We can now prove the result on concentrating solutions. The proof is

quite elementary although a bit long.

Proof of Proposition 2.42.4. Let γ : [0, `] → M be a maximal unit speed geo-

desic in M with ` < T , and let initially σ ∈ (0, T − `).
We first construct an approximate solution v = vλ for the operator 2+ q,

having the form

v(x, t) = eiλϕ(x,t)a(x, t)

where ϕ is a real phase function, and a is an amplitude supported near the

curve t 7→ (γ(t), t+ σ). Note that

∂t(e
iλϕu) = eiλϕ(∂t + iλ∂tϕ)u,

∂2
t (eiλϕu) = eiλϕ(∂t + iλ∂tϕ)2u

and similarly for the x-derivatives

∇(eiλϕu) = eiλϕ(∇+ iλ∇ϕ)u,

div∇(eiλϕu) = eiλϕ(div + iλ〈∇ϕ, · 〉)(∇+ iλ∇ϕ)u.

We thus compute

(2 + q)(eiλϕa) = eiλϕ((∂t + iλ∂tϕ)2 − (divx + iλ〈∇xϕ, · 〉)(∇x + iλ∇xϕ) + q)a

= eiλϕ
[
λ2
[
|∇xϕ|2g − (∂tϕ)2

]
a

+ iλ [2∂tϕ∂ta− 2〈∇xϕ,∇xa〉+ (2ϕ)a] + (2 + q)a
]
.(2.8)

We would like to have (2 + q)(eiλϕa) = O(λ−1), so that v = eiλϕa would

indeed be an approximate solution when λ is large. To this end, we first

choose ϕ so that the λ2 term in (2.82.8) vanishes. This will be true if ϕ solves

the eikonal equation

(2.9) |∇xϕ|2g − (∂tϕ)2 = 0.



MINICOURSE ON GEOMETRIC INVERSE PROBLEMS 21

We make the simple choice

(2.10) ϕ(x, t) := t− ψ(x)

where ψ ∈ C∞(M) should solve the equation

(2.11) |∇ψ|2g = 1.

This is another eikonal equation, now only in the x variables. We now invoke

the assumption that (M, g) is simple and give an explicit solution of (2.112.11).

Let (U, g) be an open manifold as in Lemma 2.62.6 that contains M as a

compact subdomain. Let η be the maximal geodesic in U with η|[0,`] = γ

and, possibly after decreasing σ > 0, p := η(−σ) ∈ U \M . By Lemma 2.62.6,

if Dp is the maximal domain of expp in TpU , then

expp : Dp → U

is a diffeomorphism. Thus any point x ∈ U can be written uniquely as

x = expp(rω)

for some r ≥ 0 and ω ∈ Sn−1 with rω ∈ Dp. Identifying x with (ω, r) gives

global coordinates in U . We claim that

ψ(ω, r) := r

is a smooth solution of (2.112.11) near M . Note first that ψ is smooth in M ,

since the origin of polar coordinates is outside M . Now the fact that ψ

solves (2.112.11) follows immediately from Lemma 2.72.7 since

〈∇ψ,∇ψ〉 = 〈∂r, ∂r〉 = 1.

With the choice ϕ(x, t) = t − ψ(x), we have (2.92.9) and thus the equation

(2.82.8) becomes

(2.12) (2 + q)(eiλϕa) = eiλϕ [iλ(La) + (2 + q)a]

where L is the operator defined by

La := 2∂tϕ∂ta− 2〈∇xϕ,∇xa〉+ (2ϕ)a.

Clearly ∂tϕ = 1, and since ψ(ω, r) = r we obtain from Lemma 2.72.7 that

〈∇xϕ,∇xa〉 = gjk∂xjϕ∂xka = ∂ra.

Writing b := 2ϕ, the operator L simplifies to

(2.13) La = 2(∂t + ∂r)a+ ba.

We next look for the amplitude a in the form

a = a0 + λ−1a−1.
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Inserting this to (2.82.8) and equating like powers of λ, we get

(2.14)

(2 + q)(eiλϕa) = eiλϕ
[
iλ(La0) + [iLa−1 + (2 + q)a0] + λ−1(2 + q)a−1

]
.

We would like the last expression to be O(λ−1). This will hold if a0 and a−1

satisfy the transport equations{
La0 = 0,

La−1 = i(2 + q)a0.
(2.15)

It is not hard to solve these transport equations. To do this, it is convenient

to consider new coordinates (ω, z, w) near M × (0, T ), where

(2.16) z =
t+ r

2
, w =

t− r
2

.

Then L in (2.132.13) simplifies to 2∂z + b in the sense that

LF (x, t) = (2∂zF̆ + b̆F̆ )(ω,
t+ r

2
,
t− r

2
)

where F̆ corresponds to F in the new coordinates:

F̆ (ω, z, w) := F (ω, z − w, z + w).

Finally, we can use an integrating factor to get rid of b̆. One has

(2.17) LF (x, t) = 2c−1∂z(cF̆ )(ω,
t+ r

2
,
t− r

2
)

provided that 2∂zc = b̆c, which holds e.g. with the choice

c(ω, z, w) := e
1
2

∫ z
0 b̆(ω,s,w) ds.

We can now solve the transport equations (2.152.15). By (2.172.17) the first

transport equation reduces to

∂z(că0) = 0.

Recall that we want our amplitude a to be supported near the curve t 7→
(η(t), t + σ) in the (x, t) coordinates. Recall also that the center p of our

polar coordinates was given by p = η(−σ). Thus η(t) = (ω0, t+ σ) for some

ω0 ∈ Sn−1 in the (ω, r) coordinates, and at time σ+ t the amplitude should

be supported near (ω0, σ + t). Because of these facts, it makes sense to

choose

ă0(ω, z, w) := c(ω, z, w)−1χ(ω,w).

where χ ∈ C∞c (Sn−1 × R) is supported near (ω0, 0). We will later choose χ

to depend on λ. Note also that γ(t) exits M when t = `, which means that

ă0|M×[σ+`+ε,σ+`+2ε] = 0

for some ε > 0 if σ is chosen so small that σ + ` < T . We set ă0 = 0 for

t ∈ [σ + `+ ε, T ].
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Next we choose

ă−1(ω, z, w) := − 1

2ic

∫ z

0
c((2 + q)a0)̆ (ω, s, w) ds.

The functions a0 and a−1 satisfy (2.152.15), and they vanish unless w is small

(i.e. r is close to t− σ). Then (2.142.14) becomes

(2 + q)(eiλϕa) = Fλ

where

Fλ := λ−1eiλϕ(2 + q)a−1.

Using the Cauchy-Schwarz inequality, one can check that

‖Fλ‖L∞(M×(0,T )) ≤ λ−1‖(2 + q)a−1‖L∞(M×(0,T ))

≤ Cλ−1‖χ‖W 4,∞(Sn−1×R)(2.18)

uniformly over λ ≥ 1. This concludes the construction of the approximate

solution v = eiλϕa.

We next find an exact solution u = uλ of (2.12.1) having the form

u = v +R

where R is a correction term. Note that for t close to 0, v( · , t) is supported

near p /∈M and hence v = ∂tv = 0 on {t = 0}. Note also that (2+q)v = Fλ.

Thus u will solve (2.12.1) for f = v|∂M×(0,T ) if R solves

(2.19)


(2 + q)R = −Fλ in M × (0, T ),

R = 0 on ∂M × (0, T ),

R = ∂tR = 0 on {t = 0}.

By the wellposedness of this problem (see [Ev10Ev10, Theorem 5 in §7.2.3] for

the Euclidean case, again the proof in the Riemannian case is the same),

there is a unique solution R with

(2.20) ‖R‖L∞((0,T );H1(M)) ≤ C‖Fλ‖L2((0,T );L2(M)) ≤ Cλ−1‖χ‖W 4,∞ .

We now fix the choice of χ so that (2.52.5) will hold. Recall that χ ∈
C∞c (Sn−1 × R) is supported near (ω0, 0). We may parametrize a neighbor-

hood of ω0 in Sn−1 by points y′ ∈ Rn−1 so that ω0 corresponds to 0, and thus

we may think of χ as a function in Rn supported near 0. Let ζ ∈ C∞c (Rn)

satisfy ζ = 1 near 0 and ‖ζ‖L2(Rn) = 1, and choose

χ(y) := ε−n/2ζ(y/ε)

where

ε = ε(λ) = λ−
1

n+8 .

With this choice

‖χ‖L2(Rn) = 1, ‖χ‖W 4,∞(Rn) . ε
−n/2−4 . λ1/2.
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It follows from (2.202.20) that

‖v‖L2(M×(0,T )) . 1, ‖R‖L2(M×(0,T )) . λ
−1/2.

Since u = v +R, the integral in (2.52.5) has the form∫
M

∫ T

0
ψ|u|2 dV dt =

∫
M

∫ T

0
ψ|v|2 dV dt+O(λ−1/2)

=

∫
M

∫ T

0
ψ|a0|2 dV dt+O(λ−1/2).

Using that ψ|a0|2 is compactly supported in M int × (0, T ), we may use the

(y′, r, t) coordinates (where y′ ∈ Rn−1 corresponds to ω ∈ Sn−1) to see that∫
M

∫ T

0
ψ|u|2 dV dt =

∫
Rn+1

ψ(y′, r, t)ε−nζ(
y′

ε
,
t− r
2ε

)2 dy′ dr dt+O(λ−1/2)

=

∫
Rn+1

ψ(y′, z − w, z + w)ε−nζ(y′/ε, w/ε)2 dy′ dz dw +O(λ−1/2)

by changing variables as in (2.162.16). Finally, changing y′ to εy′ and w to εw

and letting λ→∞ (so ε→ 0) yields

lim
λ→∞

∫
M

∫ T

0
ψ|u|2 dV dt =

∫
Rn+1

ψ(0′, z, z)ζ(y′, w)2 dy′ dz dw

=

∫ ∞
−∞

ψ(0′, z, z) dz

by the normalization ‖ζ‖L2(Rn) = 1 and the fact that ψ ∈ C∞c (M int× [0, T ]).

Undoing the changes of coordinates, we see that the curve (0′, z, z) in the

(y′, r, t) coordinates corresponds to t 7→ (ω0, t, t) in the (ω, r, t) coordinates.

Thus ∫ ∞
−∞

ψ(0′, z, z) dz =

∫ `

0
ψ(γ(t), t+ σ) dt

which proves (2.52.5).

It remains to prove (2.62.6). Since γ(t) exits M after time ` < T , we have

v|M×[σ+`+ε,σ+`+2ε] = 0 for some small ε > 0. Redefining v to be zero for

t ≥ σ+`+2ε, we see that (2.182.18) still holds. Then we choose R solving (2.192.19)

but with R = ∂RR = 0 on {t = T} instead of {t = 0}. We can do such a

construction for the potential q̃ instead of q. Since ϕ and a0 are independent

of the potential q, the same argument as above proves (2.62.6). �

Exercise 2.1 (Time-dependent case). Let q ∈ C∞c (M int×R), and consider

the Dirichlet problem

(2.21)


(2 + q)u = 0 in M × R,

u = f on ∂M × R,
u = 0 for t� 0.
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Here t � 0 means that t ≤ −T0 for some T0 ≥ 0. You may assume that

this problem is well-posed and for any f ∈ C∞c (∂M × R) there is a unique

solution u ∈ C∞(M × R). Consider the hyperbolic DN map

Λq : C∞c (∂M × R)→ C∞(∂M × R), f 7→ ∂νu|∂M×R.

(a) Formulate a counterpart of Lemma 2.32.3 in this case.

(b) Formulate a counterpart of Proposition 2.42.4. Which parts of the proof

need to be modified?

(c) Use parts (a) and (b) to show that if Λq1 = Λq2 , then∫ `

0
q1(γ(t), t+ σ) dt =

∫ `

0
q2(γ(t), t+ σ) dt

for any maximal geodesic γ : [0, `]→M and any σ ∈ R.

(d) Use the Fourier transform in σ and injectivity of the geodesic X-ray

transform in (M, g) to invert the light ray transform in part (c) and

to prove that q1 = q2. (Hint. Look at the derivatives of the Fourier

transform at 0.)

3. Calderón problem

Electrical Impedance Tomography (EIT) is an imaging method with ap-

plications in seismic and medical imaging and nondestructive testing. The

method is based on the following important inverse problem.

Calderón problem: Is it possible to determine the electri-

cal conductivity of a medium by making voltage and current

measurements on its boundary?

In a standard formulation the medium is modelled by a bounded domain

Ω ⊂ Rn (in practice n = 3), and one considers boundary measurements for

solutions of the conductivity equation

div(γ∇u) = 0 in Ω

where γ ∈ C∞(Ω) is a positive function (electrical conductivity).

If the electrical properties of the medium depend on direction, which

happens e.g. in muscle tissue, the medium is said to be anisotropic and

γ = (γjk) is a positive definite matrix function. When n ≥ 3 one can write

γjk = det(g)1/2gjk for some Riemannian metric g, and the conductivity

equation becomes

divg(∇gu) = 0.

Thus Riemannian geometry appears already when considering anisotropic

conductivities in Euclidean domains. More generally, if (M, g) is a compact

manifold with smooth boundary, we can consider the equation

(3.1) divg(γ∇gu) = 0
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for a positive function γ ∈ C∞(M). This equation contains both equations

above as a special case.

As a final reduction, if we replace u by γ−1/2u in (3.13.1), we obtain the

equivalent Schrödinger equation

(−∆g + q)u = 0 in M

where q =
∆g(γ1/2)

γ1/2
. It is this equation that we will study.

Let (M, g) be a compact manifold with smooth boundary, and let q ∈
C∞(M) be a potential. Consider the Dirichlet problem

(3.2)

{
(−∆g + q)u = 0 in M,

u = f on ∂M.

We assume that 0 is not a Dirichlet eigenvalue. Then for any f ∈ C∞(∂M)

there is a unique solution u ∈ C∞(M). The boundary measurements are

given by the (elliptic) DN map

Λq : C∞(∂M)→ C∞(∂M), Λqf = ∂νu|∂M .

The Calderón problem in this setting is to determine the potential q from

the knowledge of the DN map Λq, when the metric g is known.

The Calderón problem is by now well understood in Euclidean domains

[KV84KV84, SU87SU87, Na96Na96, Bu08Bu08]. Moreover, if dim(M) = 2 and M is simply

connected then isothermal coordinates, see Theorem 1.131.13, can be used to

reduce the Riemannian case to the Euclidean case. We will thus assume

from now on that dim(M) ≥ 3. In this case the problem is open in general,

but there are results in special product geometries.

Definition. We say that (M, g) is transversally anisotropic if

(M, g) ⊂⊂ (R×M0, g), g = e⊕ g0,

where (R, e) is the Euclidean line and (M0, g0) is a compact (n−1)-manifold

with boundary called the transversal manifold.

The definition means that (M, g) is contained in a product manifold R×
M0 with coordinates (t, x) where t ∈ R and x ∈ M0, and the metric looks

like

g(t, x) =

(
1 0

0 g0(x)

)
.

The Laplace-Beltrami operator has the form

−∆g = −∂2
t −∆x

where ∆x is the Laplace-Beltrami operator of (M0, g0). Note that this looks

similar to the Gel’fand problem studied in Section 22, where we studied the
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wave operator ∂2
t − ∆x. Formally the Wick rotation, i.e. the map t 7→ it,

converts one equation to the other.

It turns out that, surprisingly, there are in fact analogies between the

elliptic and hyperbolic inverse problems. One has the following counterpart

of Theorem 2.12.1, first proved in [DKSU09DKSU09].

Theorem 3.1 (Uniqueness). Let (M, g) be a compact transversally anisotropic

manifold. Assume also that the transversal manifold (M0, g0) is simple. If

q1, q2 ∈ C∞(M) and if

Λq1 = Λq2 ,

then q1 = q2 in M .

By conformal invariance Theorem 3.13.1 holds more generally for metrics of

the form g = c(e ⊕ g0) for c ∈ C∞(M) positive. Moreover, the assump-

tion that (M0, g0) is simple can be relaxed to the assumption that (M0, g0)

has injective geodesic X-ray transform [DKLS16DKLS16]. However, the following

questions remain open:

Question 3.1. Is Theorem 3.13.1 true for any transversal manifold (M0, g0)?

Question 3.2. Is Theorem 3.13.1 true for any compact manifold (M, g)?

Similarly as for the wave equation, it turns out that one can get better

results for nonlinear elliptic equations. Consider the model equation

(3.3)

{
−∆gu+ qu3 = 0 in M,

u = f on ∂M.

In fact the method applies to the nonlinearities qum for any integer m ≥ 3.

If f ∈ C∞(∂M) is small (say in the C2,α(∂M) norm), a Banach fixed point

argument implies that (3.33.3) has a unique small solution u ∈ C∞(M). One

can define the nonlinear DN map

ΛNL
q : {f ∈ C∞(∂M) ; ‖f‖C2,α(∂M) < δ} → C∞(∂M), Λqf = ∂νu|∂M .

It was proved independently in [FO20FO20, LLLS20LLLS20] that Question 3.13.1, which

is open for the linear Schrödinger equation, can be solved for the nonlinear

equation (3.33.3).

Theorem 3.2 (Nonlinear case). Let (M, g) be a compact transversally anisotropic

manifold, and let q1, q2 ∈ C∞(M). If

ΛNL
q1 = ΛNL

q2 ,

then q1 = q2 in M .

Let us now sketch the proof of Theorem 3.13.1. The general scheme will be

exactly the same as in the proof of Theorem 2.12.1 in the wave equation case,

but with a few important differences. The proof proceeds in four steps:
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1. Derivation of an integral identity showing that if Λq1 = Λq2 , then

q1 − q2 is L2-orthogonal to certain products of solutions.

2. Construction of special solutions that concentrate near two-dimensional

manifolds R× γ where γ is a maximal geodesic in M0.

3. Inserting the special solutions in the integral identity and taking a

limit, in order to recover integrals over geodesics.

4. Inversion of the geodesic X-ray transform to prove that q1 = q2.

3.1. Integral identity. The first step, the integral identity, is completely

analogous to the wave equation case.

Lemma 3.3 (Integral identity). Let (M, g) be a compact manifold with

boundary and let q1, q2 ∈ C∞(M). If f1, f2 ∈ C∞(∂M), then

((Λq1 − Λq2)f1, f2)L2(∂M) =

∫
M

(q1 − q2)u1ū2 dV

where uj ∈ C∞(M) solves (−∆ + qj)uj = 0 in M with uj |∂M = fj.

Proof. We first observe that the DN map is symmetric: if q ∈ C∞(M) is

real valued and if uf solves (−∆ + q)uf = 0 in M with uf |∂M = f , then an

integration by parts shows that

(Λqf, g)L2(∂M) =

∫
∂M

(∂νuf )ug dS =

∫
M

(〈∇uf ,∇ug〉+ (∆uf )ug) dV

=

∫
M

(〈∇uf ,∇ug〉+ qufug) dV

=

∫
∂M

uf∂νug dS = (f,Λqg)L2(∂M).

Thus

(Λq1f1, f2)L2(∂M) =

∫
M

(〈∇u1,∇u2〉+ q1u1u2) dV,

(Λq2f1, f2)L2(∂M) = (f1,Λq2f2)L2(∂M) =

∫
M

(〈∇u1,∇u2〉+ q2u1u2) dV.

The result follows by subtracting the above two identities. �

By Lemma 3.33.3, if Λq1 = Λq2 , then

(3.4)

∫
M

(q1 − q2)u1ū2 dV = 0

for any solutions uj ∈ C∞(M) with (−∆ + qj)uj = 0 in M .
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3.2. Special solutions and proof of Theorem 3.13.1. We will next con-

struct special solutions to the equation (−∆ + q)u = 0. Just like for the

wave equation, we start with the geometric optics ansatz

(3.5) v(t, x) = eiλΦ(t,x)a(t, x)

where λ ∈ R is a large parameter, Φ is a complex valued phase function, and

a is an amplitude. The fact that the equation is elliptic requires us to use

complex phase functions, and the corresponding solutions are called complex

geometrical optics solutions.

The construction of special solutions is similar to the wave equation case,

but has the following important differences which are consistent with the

Wick rotation t 7→ it:

• The eikonal equation is 〈∇xΦ,∇xΦ〉g0+(∂tΦ)2 = 0 instead of |∇xϕ|2g−
(∂tϕ)2 = 0. The phase function Φ(x, t) = it − r is complex valued,

instead of being real valued as in ϕ(x, t) = t− r.
• The amplitude solves a complex transport equation 2(∂r + i∂t)a +

ba = 0, which has solutions concentrating near two-manifolds, in-

stead of solving a real transport equation 2(∂r + ∂t)a0 + ba0 = 0

which has solutions concentrating near curves.

• The solutions concentrate near two-dimensional manifolds R × γ

where γ is a maximal geodesic in M0, instead of concentrating near

curves t 7→ (γ(t), t+ σ).

• The approximate solutions v = eiλΦa may grow exponentially in λ.

Thus the exact solution u = v+R cannot be constructed by solving

a Dirichlet problem for R, but one must use a different solvability

result (Carleman estimate).

We now discuss the argument in more detail. After applying the operator

−∆+q = −∂2
t −∆x+q(t, x) to the ansatz (3.53.5), we obtain a direct analogue

of the wave equation computation (2.82.8):

(3.6) (−∂2
t −∆x + q)(eiλΦa) = eiλΦ

[
λ2
[
〈∇xΦ,∇xΦ〉g0 + (∂tΦ)2

]
a

− iλ [2∂tΦ∂ta+ 2〈∇xΦ,∇xa〉+ (∆t,xΦ)a] + (−∆t,x + q)a
]
.

Recall from (2.92.9) that in the wave equation case, the eikonal equation was

|∇xϕ|2g − (∂tϕ)2 = 0

and we used the solution

ϕ = t− r
where (r, ω) were Riemannian polar coordinates in a neighborhood U of

the simple manifold M0, with center outside M0. Recall also that we were

interested in solutions that concentrate near the geodesic γ : r 7→ (r, ω0) in
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M0, where ω0 is fixed. In the elliptic case, the eikonal equation appearing

in the λ2 term in (3.63.6) is

〈∇xΦ,∇xΦ〉g0 + (∂tΦ)2 = 0 in M

and we obtain a solution by choosing

Φ(t, x) := it− r.

This is consistent with the Wick rotation t 7→ it.

Having solved the eikonal equation, (3.63.6) becomes

(−∆ + q)(eiλΦa) = eiλΦ(−iλLa+ (−∆ + q)a)

where L is the complex first order operator

La := 2(∂r + i∂t)a+ ba

where b := ∆t,xΦ. Here ∂r + i∂t is a Cauchy-Riemann, or ∂, operator. We

wish to find an amplitude solving

La = 0 in M.

Using coordinates (t, r, ω) where (r, ω) are polar coordinates as above, we

choose the solution

a(t, r, ω) = c(t, r, ω)−1χ(ω)

where c is an integrating factor solving 2(∂r + i∂t)c = bc (this amounts to

solving a ∂ equation in R2), and χ ∈ C∞c (Sn−2) is supported near ω0.

We have produced a function v = eiλΦa satisfying

(−∆ + q)v = eiλΦ(−∆ + q)a

so that a is supported near the set two-dimensional manifold (t, r, ω0), which

corresponds to the set R × γ where γ is a geodesic in M0. As in Section 22

one could try to find an exact solution u = v + R of (−∆ + q)u = 0 in M

by solving the Dirichlet problem

(3.7)

{
(−∆ + q)R = −eiλΦ(−∆ + q)a in M,

R = 0 on ∂M.

Now if Φ were real valued, the right hand side would be OL2(M)(1) as λ→∞
and at least one would get a correction term R = OL2(M)(1). This could be

converted to an estimate R = OL2(M)(λ
−1) by working with an amplitude

a = a0 + λ−1a−1 as in Section 22.

However, the phase function is not real valued and in fact eiλΦ = e−λte−iλr.

Thus the right hand side above is in general only O(eCλ), which is not good

since we wish to take the limit λ → ∞. Instead of solving the Dirichlet

problem, we need to use a different solvability result.
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Proposition 3.4 (Carleman estimate). Let (M, g) be transversally anisotropic

and let q ∈ C∞(M). There are C, λ0 > 0 so that whenever |λ| ≥ λ0 and

f ∈ L2(M), there is a function R ∈ H1(M) satisfying

(−∆ + q)(eiλΦR) = eiλΦf in M

such that

‖R‖L2(M) ≤
C

|λ|
‖f‖L2(M).

Proof. See e.g. [DKSU09DKSU09]. �

We can use Proposition 3.43.4 to convert the approximate solution v = eiλΦa

to an exact solution

u = eiλΦ(a+R)

of (−∆ + q)u = 0 in M , so that ‖R‖L2(M) → 0 as |λ| → ∞. When |λ| is

large, the solution u is concentrated near the two-dimensional manifold

(R× γ) ∩M

but may grow exponentially in λ. However, the integral identity in Lemma

3.33.3 involves the product of two solutions, and we may take another solution

of the type e−iλΦ(ã + R̃) so that the exponential growth will be cancelled

in the product. By choosing such solutions and letting λ→∞ in (3.43.4), we

obtain that the integral of q1 − q2 over the two-dimensional manifold R× γ
vanishes: ∫ ∞

−∞

∫ `

0
(q1 − q2)(t, γ(r)) dr dt = 0.

This is true for any maximal geodesic γ in (M0, g0), and hence using the

injectivity of the geodesic X-ray transform on (M0, g0) would give that∫ ∞
−∞

(q1 − q2)(t, x) dt = 0 for all x ∈M0.

This is not quite enough to conclude that q1 = q2. However, we can intro-

duce an additional parameter σ ∈ R, which is analogous to the time delay

parameter in the wave equation case. This can be done by performing the

above construction with slightly complex frequency λ+ iσ. One obtains the

following result:

Proposition 3.5 (Concentrating solutions). Let (M, g) be a transversally

anisotropic manifold and let q1, q2 ∈ C∞(M). Assume that the transversal

manifold (M0, g0) is simple, and that γ : [0, `]→M0 is a maximal geodesic.

There is λ0 > 0 so that whenever |λ| ≥ λ0 and σ ∈ R, there are solutions
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u1 = u1,λ of (−∆ + q1)u1 = 0 in M and u2 = u2,−λ of (−∆ + q2)u2 = 0 in

M such that for any ψ ∈ C∞c (M int) one has

lim
λ→∞

∫
M
ψu1u2 dV =

∫ ∞
−∞

∫ `

0
e−iσ(t+ir)ψ(t, γ(r)) dr dt.

Theorem 3.13.1 now follows by inserting the solutions in Proposition 3.53.5 to

the identity (3.43.4), taking the limit λ→∞, and using the Fourier transform

in t and injectivity of the geodesic X-ray transform in (M0, g0) as in Exercise

2.12.1.

3.3. Nonlinear case. We will now consider the nonlinear equation

(3.8)

{
−∆gu+ qu3 = 0 in M,

u = f on ∂M

and the corresponding nonlinear DN map

ΛNL
q : {f ∈ C∞(∂M) ; ‖f‖C2,α(∂M) < δ} → C∞(∂M), Λqf = ∂νu|∂M .

We will prove Theorem 3.23.2 which states that if ΛNL
q1 = ΛNL

q2 , then q1 = q2.

A standard method for dealing with inverse problems for nonlinear equa-

tions is linearization. Namely, if one knows the nonlinear DN map ΛNLq (f)

for small f , then one also knows its linearization or Frechet derivative

(DΛNLq )0(h) = ∂εΛ
NL
q (εh)|ε=0, h ∈ C∞(M).

Let uε be the small solution of (3.83.8) with boundary value f = εh, i.e.

(3.9)

{
−∆guε + qu3

ε = 0 in M,

uε = εh on ∂M.

Note that u0 = 0, since u = 0 is the unique small solution with boundary

value 0. Formally differentiating (3.93.9) in ε gives that

−∆g(∂εuε) + 3qu2
ε∂εuε = 0.

Setting ε = 0 and using that u0 = 0, we see that

vh := ∂εuε|ε=0

solves the linear equation

(3.10)

{
−∆gvh = 0 in M,

vh = h on ∂M.

Thus the linearized solution vh is just the harmonic function in (M, g) with

boundary value h. This formal computation can be justified. Since

(DΛNLq )0(h) = ∂εΛ
NL
q (εh)|ε=0 = ∂ε∂νuε|ε=0 = ∂νvh

this leads to the following:
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Lemma 3.6 (Linearization of nonlinear DN map).

(DΛNLq )0(h) = Λgh

where Λg is the DN map for the Laplace equation (3.103.10)

This shows that from the knowledge of ΛNLq , we can recover its lineariza-

tion (DΛNLq )0 = Λg. However, this first linearization does not contain any

information about the unknown potential q. It turns out that for the non-

linearity qu3, the right thing to do is to look at the third linearization, i.e.

the third order Frechet derivative, (D3ΛNLq )0.

The third linearization can be computed by considering Dirichlet data

of the form f = ε1h1 + ε2h2 + ε3h3 where hj ∈ C∞(∂M). Writing ε =

(ε1, ε2, ε3), let uε be the solution of

(3.11)

{
−∆guε + qu3

ε = 0 in M,

uε = ε1h1 + ε2h2 + ε3h3 on ∂M.

We formally apply the derivative ∂ε1ε2ε3 to this equation to obtain

0 = −∆g(∂ε1ε2ε3uε) + q∂ε1ε2ε3(u3
ε)

= −∆g(∂ε1ε2ε3uε) + q∂ε1ε2(3u2
ε∂ε3uε)

= −∆g(∂ε1ε2ε3uε) + q∂ε1(6uε∂ε2uε∂ε3uε + 3u2
ε∂ε2ε3uε)

= −∆g(∂ε1ε2ε3uε) + 6q∂ε1uε∂ε2uε∂ε3uε + . . .

where . . . consists of terms that contain a power of uε. Since u0 = 0, when

we set ε = 0 all the terms in . . . will vanish. Thus

w := ∂ε1ε2ε3uε|ε=0

will solve the equation (recall that vhj = ∂εjuε|ε=0)

(3.12)

{
−∆gw = −6qvh1vh2vh3 in M,

w = 0 on ∂M.

Now if the know the nonlinear DN map ΛNL
q (ε1h1 + ε2h2 + ε3h3) = ∂νuε,

then we also know ∂νw = ∂ν∂ε1ε2ε3uε|ε = 0. Thus for any h4 ∈ C∞(∂M),

we also know∫
∂M

(∂νw)h4 dS =

∫
M

((∆gw)vh4 + 〈∇w,∇vh4〉g) dV.

Integrating by parts in the last term, and using that w|∂M = 0 and ∆gvh4 =

0, we obtain that∫
∂M

(∂νw)h4 dS = 6

∫
M
qvh1vh2vh3vh4 dV.

Since ∂νw is determined by ΛNL
q , also the right hand side is determined by

ΛNL
q . (One can check that the left hand side is equal to ((D3ΛNLq )0(h1, h2, h3), h4)L2(∂M),
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where (D3ΛNLq )0 is the third Frechet derivative of ΛNLq considered as a tri-

linear form.) This formal argument can be justified and it leads to the

following identity:

Lemma 3.7 (Integral identity in nonlinear case). If ΛNL
q1 = ΛNL

q2 , then∫
M

(q1 − q2)vh1vh2vh3vh4 dV = 0

for all h1, h2, h3, h4 ∈ C∞(∂M).

This integral identity related to the nonlinear equation −∆gu + qu3 = 0

has two benefits over the identity for the linear equation −∆gu+ qu = 0:

• q1 − q2 is L2-orthogonal to products of four solutions, instead of

products of two solutions;

• the solutions vhj are solutions of the Laplace equation ∆gvhj = 0,

which does not contain the potential q.

Let us finally sketch how one proves Theorem 3.23.2 based on the integral

identity in Lemma 3.73.7 and the construction of special solutions in Proposi-

tion 3.53.5. The main point is that instead of considering a fixed geodesic γ in

(M0, g0), one can consider two intersecting geodesics.

Suppose that γ1 and γ2 are two maximal geodesics in (M0, g0) that inter-

sect only at one point x0 ∈M0. We use Proposition 3.53.5 to find two harmonic

functions vλ and v−λ in M so that the product vλv−λ is concentrated near

R × γ1. We similarly choose two harmonic functions wλ and w−λ in M so

that the product wλw−λ is concentrated near R× γ2. Then the product

vλv−λwλw−λ

is concentrated near the one-dimensional manifold R× {x0}, and one has

0 = lim
λ→∞

∫
M

(q1 − q2)vλv−λwλw−λ dV =

∫ ∞
−∞

e−iσt(q1 − q2)(t, x0) dt.

The point is that one has concentration at a single point x0 in M0, instead

of concentration near a fixed geodesic in M0. It follows that the Fourier

transform of (q1 − q2)( · , x0) vanishes identically for every x0 ∈ M0. It

follows that q1 = q2.

In general, given x0 ∈M0 it may not be possible to find two finite length

geodesics that only intersect at x0. The possibility of multiple intersec-

tion points can be handled by introducing another extra parameter in the

solutions, see [LLLS20LLLS20] for details. This proves Theorem 3.23.2 in general.
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